Source code for ml3d.datasets.toronto3d

import numpy as np
import pandas as pd
import os, sys, glob, pickle
from pathlib import Path
from os.path import join, exists, dirname, abspath
import random
from sklearn.neighbors import KDTree
import logging
import cloudViewer as cv3d

from .base_dataset import BaseDataset, BaseDatasetSplit
from ..utils import make_dir, DATASET

logging.basicConfig(
    level=logging.INFO,
    format='%(levelname)s - %(asctime)s - %(module)s - %(message)s',
)
log = logging.getLogger(__name__)


[docs]class Toronto3D(BaseDataset): """Toronto3D dataset, used in visualizer, training, or test."""
[docs] def __init__(self, dataset_path, name='Toronto3D', cache_dir='./logs/cache', use_cache=False, num_points=65536, class_weights=[ 35391894., 1449308., 4650919., 18252779., 589856., 743579., 4311631., 356463. ], ignored_label_inds=[0], train_files=['L001.ply', 'L003.ply', 'L004.ply'], val_files=['L002.ply'], test_files=['L002.ply'], test_result_folder='./test', **kwargs): """Initialize the function by passing the dataset and other details. Args: dataset_path: The path to the dataset to use. name: The name of the dataset (Semantic3D in this case). cache_dir: The directory where the cache is stored. use_cache: Indicates if the dataset should be cached. num_points: The maximum number of points to use when splitting the dataset. class_weights: The class weights to use in the dataset. ignored_label_inds: A list of labels that should be ignored in the dataset. test_result_folder: The folder where the test results should be stored. Returns: class: The corresponding class. """ super().__init__(dataset_path=dataset_path, name=name, cache_dir=cache_dir, use_cache=use_cache, class_weights=class_weights, num_points=num_points, ignored_label_inds=ignored_label_inds, train_files=train_files, test_files=test_files, val_files=val_files, test_result_folder=test_result_folder, **kwargs) cfg = self.cfg self.label_to_names = self.get_label_to_names() self.dataset_path = cfg.dataset_path self.num_classes = len(self.label_to_names) self.label_values = np.sort([k for k, v in self.label_to_names.items()]) self.label_to_idx = {l: i for i, l in enumerate(self.label_values)} self.ignored_labels = np.array(cfg.ignored_label_inds) self.train_files = [ join(self.cfg.dataset_path, f) for f in cfg.train_files ] self.val_files = [join(self.cfg.dataset_path, f) for f in cfg.val_files] self.test_files = [ join(self.cfg.dataset_path, f) for f in cfg.test_files ]
[docs] @staticmethod def get_label_to_names(): """Returns a label to names dictonary object. Returns: A dict where keys are label numbers and values are the corresponding names. """ label_to_names = { 0: 'Unclassified', 1: 'Ground', 2: 'Road_markings', 3: 'Natural', 4: 'Building', 5: 'Utility_line', 6: 'Pole', 7: 'Car', 8: 'Fence' } return label_to_names
[docs] def get_split(self, split): """Returns a dataset split. Args: split: A string identifying the dataset split that is usually one of 'training', 'test', 'validation', or 'all'. Returns: A dataset split object providing the requested subset of the data. """ return Toronto3DSplit(self, split=split)
[docs] def get_split_list(self, split): """Returns the list of data splits available. Args: split: A string identifying the dataset split that is usually one of 'training', 'test', 'validation', or 'all'. Returns: A dataset split object providing the requested subset of the data. Raises: ValueError: Indicates that the split name passed is incorrect. The split name should be one of 'training', 'test', 'validation', or 'all'. """ if split in ['test', 'testing']: files = self.test_files elif split in ['train', 'training']: files = self.train_files elif split in ['val', 'validation']: files = self.val_files elif split in ['all']: files = self.val_files + self.train_files + self.test_files else: raise ValueError("Invalid split {}".format(split)) return files
[docs] def is_tested(self, attr): """Checks if a datum in the dataset has been tested. Args: attr: The attribute that needs to be checked. Returns: If the datum attribute is tested, then return the path where the attribute is stored; else, returns false. """ cfg = self.cfg name = attr['name'] path = cfg.test_result_folder store_path = join(path, self.name, name + '.npy') if exists(store_path): print("{} already exists.".format(store_path)) return True else: return False
[docs] def save_test_result(self, results, attr): """Saves the output of a model. Args: results: The output of a model for the datum associated with the attribute passed. attr: The attributes that correspond to the outputs passed in results. """ cfg = self.cfg name = attr['name'].split('.')[0] path = cfg.test_result_folder make_dir(path) pred = results['predict_labels'] pred = np.array(pred) for ign in cfg.ignored_label_inds: pred[pred >= ign] += 1 store_path = join(path, self.name, name + '.npy') make_dir(Path(store_path).parent) np.save(store_path, pred) log.info("Saved {} in {}.".format(name, store_path))
class Toronto3DSplit(BaseDatasetSplit): def __init__(self, dataset, split='training'): super().__init__(dataset, split=split) self.UTM_OFFSET = [627285, 4841948, 0] def __len__(self): return len(self.path_list) def get_data(self, idx): pc_path = self.path_list[idx] log.debug("get_data called {}".format(pc_path)) data = cv3d.t.io.read_point_cloud(pc_path).point points = data["points"].numpy() - self.UTM_OFFSET points = np.float32(points) feat = data["colors"].numpy().astype(np.float32) labels = data['scalar_Label'].numpy().astype(np.int32).reshape((-1,)) data = {'point': points, 'feat': feat, 'label': labels} return data def get_attr(self, idx): pc_path = Path(self.path_list[idx]) name = pc_path.name.replace('.txt', '') pc_path = str(pc_path) split = self.split attr = {'idx': idx, 'name': name, 'path': pc_path, 'split': split} return attr DATASET._register_module(Toronto3D)