cloudViewer.ml.torch.datasets.Electricity3D#

class cloudViewer.ml.torch.datasets.Electricity3D(dataset_path, name='Electricity3D', cache_dir='./logs/cache', use_cache=False, num_points=65536, class_weights=[635262, 1881335, 3351389, 135650, 1132024, 282850, 3384, 102379, 357589, 20374, 332435, 42973, 164957, 8626, 7962, 11651, 64765, 26884, 42479], ignored_label_inds=[0], val_files=['1_9_local_a', '7_29_local'], test_result_folder='./test', **kwargs)[source]#

This class is used to create a dataset based on the Electricity3D dataset, and used in visualizer, training, or testing. The dataset includes 19 semantic classes and covers a variety of electricity outdoor scenes.

__init__(dataset_path, name='Electricity3D', cache_dir='./logs/cache', use_cache=False, num_points=65536, class_weights=[635262, 1881335, 3351389, 135650, 1132024, 282850, 3384, 102379, 357589, 20374, 332435, 42973, 164957, 8626, 7962, 11651, 64765, 26884, 42479], ignored_label_inds=[0], val_files=['1_9_local_a', '7_29_local'], test_result_folder='./test', **kwargs)[source]#

Initialize the function by passing the dataset and other details.

Parameters:
  • dataset_path – The path to the dataset to use.

  • name – The name of the dataset (Electricity3D in this case).

  • cache_dir – The directory where the cache is stored.

  • use_cache – Indicates if the dataset should be cached.

  • num_points – The maximum number of points to use when splitting the dataset.

  • class_weights – The class weights to use in the dataset.

  • ignored_label_inds – A list of labels that should be ignored in the dataset.

  • val_files – The files with the data.

  • test_result_folder – The folder where the test results should be stored.

Returns:

The corresponding class.

Return type:

class

static get_label_to_names()[source]#

Returns a label to names dictonary object.

Returns:

A dict where keys are label numbers and values are the corresponding names.

get_split(split)[source]#

Returns a dataset split.

Parameters:
  • split – A string identifying the dataset split that is usually one of

  • 'training'

  • 'test'

  • 'validation'

  • 'all'. (or) –

Returns:

A dataset split object providing the requested subset of the data.

get_split_list(split)[source]#

Returns the list of data splits available.

Parameters:
  • split – A string identifying the dataset split that is usually one of

  • 'training'

  • 'test'

  • 'validation'

  • 'all'. (or) –

Returns:

A dataset split object providing the requested subset of the data.

Raises:
  • ValueError – Indicates that the split name passed is incorrect. The split name should be one of

  • 'training', 'test', 'validation', or 'all'.

is_tested(attr)[source]#

Checks if a datum in the dataset has been tested.

Parameters:
  • dataset – The current dataset to which the datum belongs to.

  • attr – The attribute that needs to be checked.

Returns:

If the dataum attribute is tested, then resturn the path where the attribute is stored; else, returns false.

save_test_result(results, attr)[source]#

Saves the output of a model.

Parameters:
  • results – The output of a model for the datum associated with the attribute passed.

  • attr – The attributes that correspond to the outputs passed in results.