Contents Menu Expand Light mode Dark mode Auto light/dark mode
ACloudViewer 3.9.4 documentation
ACloudViewer 3.9.4 documentation

Getting Started

  • Introduction
  • Installation
  • Quick Start
  • Building from Source
  • Build documentation
  • CloudViewer-ML

Tutorial

  • Tutorial
  • Core
    • Tensor
    • Hash map
  • Geometry
    • Point cloud
    • Mesh
    • RGBD images
    • KDTree
    • Half Edge Mesh
    • File IO
    • Point cloud outlier removal
    • Voxelization
    • Octree
    • Surface reconstruction
    • Transformation
    • Mesh deformation
    • Intrinsic shape signatures (ISS)
    • Ray Casting
    • Distance Queries
    • UV Maps
    • Python Interface
    • Working with NumPy
  • Geometry (Tensor)
    • PointCloud
  • Dataset
  • Visualization
    • Visualization
    • Customized visualization
    • Interactive visualization
    • Non-blocking visualization
    • Headless rendering
    • CPU (Software) Rendering
    • Web visualizer and Jupyter
    • CloudViewer for TensorBoard
    • Simple geometry sequences
    • Rich 3D models with PBR materials
    • 3DML models training and inference
    • Custom properties and semantic segmentation
    • 3D object detection
    • Troubleshooting
  • Pipelines
    • ICP registration
    • Robust kernels
    • Colored point cloud registration
    • Global registration
    • Multiway registration
    • RGBD integration
    • RGBD Odometry
    • Color Map Optimization
  • Pipelines (Tensor)
    • ICP registration
    • Robust Kernel
  • Reconstruction system
    • System overview
    • Make fragments
    • Register fragments
    • Refine registration
    • Integrate scene
    • Capture your own dataset
  • Reconstruction system (Tensor)
    • Voxel Block Grid
    • TSDF Integration
    • Customized Integration
    • Ray Casting in a Voxel Block Grid
    • Dense RGB-D SLAM
  • Sensor
    • Azure Kinect with CloudViewer
    • RealSense with CloudViewer
  • Advanced Topics
  • Reference

Python API

  • cloudViewer.camera
    • PinholeCameraIntrinsic
    • PinholeCameraIntrinsicParameters
    • PinholeCameraParameters
    • PinholeCameraTrajectory
  • cloudViewer.core
    • Blob
    • DLDeviceType
    • Device
    • Dtype
    • DynamicSizeVector
    • HashBackendType
    • HashMap
    • HashSet
    • Scalar
    • SizeVector
    • Tensor
    • TensorList
    • addmm
    • append
    • concatenate
    • det
    • inv
    • lstsq
    • lu
    • lu_ipiv
    • matmul
    • maximum
    • minimum
    • solve
    • svd
    • tril
    • triu
    • triul
    • cuda
      • device_count
      • is_available
      • release_cache
      • synchronize
    • kernel
      • test_linalg_integration
    • nns
      • NearestNeighborSearch
  • cloudViewer.data
    • ArmadilloMesh
    • AvocadoModel
    • BalusterVase
    • BedroomRGBDImages
    • BunnyMesh
    • CrateModel
    • DamagedHelmetModel
    • DataDescriptor
    • Dataset
    • DemoColoredICPPointClouds
    • DemoCropPointCloud
    • DemoCustomVisualization
    • DemoDopplerICPSequence
    • DemoFeatureMatchingPointClouds
    • DemoICPPointClouds
    • DemoPoseGraphOptimization
    • DownloadDataset
    • EaglePointCloud
    • FacetsModel
    • FlightHelmetModel
    • JackJackL515Bag
    • JuneauImage
    • KnotMesh
    • LivingRoomPointClouds
    • LoungeRGBDImages
    • MetalTexture
    • MonkeyModel
    • OfficePointClouds
    • PCDPointCloud
    • PLYPointCloud
    • PaintedPlasterTexture
    • PolylinesModel
    • RedwoodIndoorLivingRoom1
    • RedwoodIndoorLivingRoom2
    • RedwoodIndoorOffice1
    • RedwoodIndoorOffice2
    • SampleFountainRGBDImages
    • SampleL515Bag
    • SampleNYURGBDImage
    • SampleRedwoodRGBDImages
    • SampleSUNRGBDImage
    • SampleTUMRGBDImage
    • SwordModel
    • TerrazzoTexture
    • TilesTexture
    • WoodFloorTexture
    • WoodTexture
    • get_custom_downloads_prefix
    • set_custom_downloads_prefix
  • cloudViewer.geometry
    • BoundingBox
    • DeformAsRigidAsPossibleEnergy
    • FilterScope
    • GenericCloud
    • GenericIndexedCloud
    • GenericIndexedCloudPersist
    • GenericIndexedMesh
    • GenericMesh
    • GenericTriangle
    • HalfEdge
    • HalfEdgeTriangleMesh
    • Image
    • ImageFilterType
    • KDTreeFlann
    • KDTreeSearchParam
    • KDTreeSearchParamHybrid
    • KDTreeSearchParamKNN
    • KDTreeSearchParamRadius
    • LineSet
    • MeshScalarFieldProcessType
    • Octree
    • OctreeColorLeafNode
    • OctreeInternalNode
    • OctreeInternalPointNode
    • OctreeLeafNode
    • OctreeNode
    • OctreeNodeInfo
    • OctreePointColorLeafNode
    • OrientedBoundingBox
    • Polyline
    • RGBDImage
    • RansacParams
    • RansacResult
    • ReferenceCloud
    • SimplificationContraction
    • TetraMesh
    • TriangulationType
    • VerticesIndexes
    • Voxel
    • VoxelGrid
    • ccBBox
    • ccBox
    • ccCircle
    • ccCone
    • ccCoordinateSystem
    • ccCylinder
    • ccDisc
    • ccDish
    • ccDrawableObject
    • ccExtru
    • ccFacet
    • ccGenericMesh
    • ccGenericPointCloud
    • ccGenericPrimitive
    • ccHObject
    • ccMesh
    • ccObject
    • ccPlanarEntityInterface
    • ccPlane
    • ccPointCloud
    • ccPolyline
    • ccQuadric
    • ccSphere
    • ccTorus
    • ecvMeshBase
    • ecvOrientedBBox
    • To2DLabel
    • To2DViewportLabel
    • To2DViewportObject
    • ToBBox
    • ToBox
    • ToCameraSensor
    • ToCone
    • ToCoordinateSystem
    • ToCylinder
    • ToDish
    • ToExtru
    • ToFacet
    • ToGBLSensor
    • ToImage
    • ToImage2
    • ToKdTree
    • ToLineSet
    • ToMesh
    • ToOctree2
    • ToOctreeProxy
    • ToOrientedBBox
    • ToPlane
    • ToPointCloud
    • ToPolyline
    • ToQuadric
    • ToRGBDImage
    • ToSensor
    • ToSphere
    • ToSubMesh
    • ToTorus
    • ToTransBuffer
    • ToVoxelGrid
    • get_rotation_matrix_from_axis_angle
    • get_rotation_matrix_from_euler_angle
    • get_rotation_matrix_from_quaternion
    • get_rotation_matrix_from_xyz
    • get_rotation_matrix_from_xzy
    • get_rotation_matrix_from_yxz
    • get_rotation_matrix_from_yzx
    • get_rotation_matrix_from_zxy
    • get_rotation_matrix_from_zyx
    • keypoint
      • compute_iss_keypoints
  • cloudViewer.io
    • FileGeometry
    • read_entity
    • read_feature
    • read_file_geometry_type
    • read_image
    • read_line_set
    • read_octree
    • read_pinhole_camera_intrinsic
    • read_pinhole_camera_parameters
    • read_pinhole_camera_trajectory
    • read_point_cloud
    • read_point_cloud_from_bytes
    • read_pose_graph
    • read_triangle_mesh
    • read_triangle_model
    • read_voxel_grid
    • write_entity
    • write_feature
    • write_image
    • write_line_set
    • write_octree
    • write_pinhole_camera_intrinsic
    • write_pinhole_camera_parameters
    • write_pinhole_camera_trajectory
    • write_point_cloud
    • write_point_cloud_to_bytes
    • write_pose_graph
    • write_triangle_mesh
    • write_voxel_grid
    • rpc
      • BufferConnection
      • Connection
      • destroy_zmq_context
      • data_buffer_to_meta_geometry
      • set_active_camera
      • set_legacy_camera
      • set_mesh_data
      • set_point_cloud
      • set_time
      • set_triangle_mesh
  • cloudViewer.t
    • geometry
      • AxisAlignedBoundingBox
      • DrawableGeometry
      • Geometry
      • Image
      • InterpType
      • LineSet
      • MethodOBBCreate
      • Metric
      • MetricParameters
      • OrientedBoundingBox
      • PointCloud
      • RGBDImage
      • RaycastingScene
      • TensorMap
      • TriangleMesh
      • VectorMetric
      • VoxelBlockGrid
    • io
      • DepthNoiseSimulator
      • RGBDSensor
      • RGBDVideoMetadata
      • RGBDVideoReader
      • SensorType
      • read_image
      • read_npz
      • read_numpy
      • read_point_cloud
      • read_triangle_mesh
      • write_image
      • write_npz
      • write_numpy
      • write_point_cloud
      • write_triangle_mesh
    • pipelines
      • odometry
        • Method
        • OdometryConvergenceCriteria
        • OdometryLossParams
        • OdometryResult
        • compute_odometry_information_matrix
        • compute_odometry_result_hybrid
        • compute_odometry_result_intensity
        • compute_odometry_result_point_to_plane
        • rgbd_odometry_multi_scale
      • registration
        • ICPConvergenceCriteria
        • RegistrationResult
        • TransformationEstimation
        • TransformationEstimationForColoredICP
        • TransformationEstimationForDopplerICP
        • TransformationEstimationPointToPlane
        • TransformationEstimationPointToPoint
        • compute_fpfh_feature
        • correspondences_from_features
        • evaluate_registration
        • get_information_matrix
        • icp
        • multi_scale_icp
        • robust_kernel
          • RobustKernel
          • RobustKernelMethod
      • slac
        • control_grid
        • slac_debug_option
        • slac_optimizer_params
        • run_rigid_optimizer_for_fragments
        • run_slac_optimizer_for_fragments
        • save_correspondences_for_pointclouds
      • slam
        • Frame
        • Model
  • cloudViewer.ml
    • contrib
      • iou_3d_cpu
      • iou_bev_cpu
      • knn_search
      • radius_search
      • subsample
      • subsample_batch
    • torch
      • classes
        • RaggedTensor
      • dataloaders
        • ConcatBatcher
        • DefaultBatcher
        • TorchDataloader
        • get_sampler
      • datasets
        • Argoverse
        • Custom3D
        • Electricity3D
        • InferenceDummySplit
        • KITTI
        • Lyft
        • NuScenes
        • ParisLille3D
        • S3DIS
        • Scannet
        • SemSegRandomSampler
        • SemSegSpatiallyRegularSampler
        • Semantic3D
        • SemanticKITTI
        • ShapeNet
        • SunRGBD
        • Toronto3D
        • Waymo
        • utils
          • BEVBox3D
          • DataProcessing
          • ObjdetAugmentation
          • create_3D_rotations
          • get_min_bbox
          • trans_augment
          • trans_crop_pc
          • trans_normalize
      • layers
        • ContinuousConv
        • FixedRadiusSearch
        • KNNSearch
        • RadiusSearch
        • SparseConv
        • SparseConvTranspose
        • VoxelPooling
      • models
        • KPFCNN
        • PVCNN
        • PointPillars
        • PointRCNN
        • PointTransformer
        • RandLANet
        • SparseConvUnet
      • modules
        • losses
          • CrossEntropyLoss
          • FocalLoss
          • SemSegLoss
          • SmoothL1Loss
          • filter_valid_label
        • metrics
          • SemSegMetric
      • ops
        • build_spatial_hash_table
        • continuous_conv
        • continuous_conv_transpose
        • fixed_radius_search
        • invert_neighbors_list
        • knn_search
        • nms
        • radius_search
        • ragged_to_dense
        • reduce_subarrays_sum
        • sparse_conv
        • sparse_conv_transpose
        • voxel_pooling
        • voxelize
      • pipelines
        • ObjectDetection
        • SemanticSegmentation
      • vis
        • BoundingBox3D
        • Colormap
        • DataModel
        • DatasetModel
        • LabelLUT
        • Model
        • Visualizer
        • deque
        • rgb_to_yiq
  • cloudViewer.pipelines
    • color_map
      • NonRigidOptimizerOption
      • RigidOptimizerOption
      • run_non_rigid_optimizer
      • run_rigid_optimizer
    • integration
      • ScalableTSDFVolume
      • TSDFVolume
      • TSDFVolumeColorType
      • UniformTSDFVolume
    • odometry
      • OdometryOption
      • RGBDOdometryJacobian
      • RGBDOdometryJacobianFromColorTerm
      • RGBDOdometryJacobianFromHybridTerm
      • compute_rgbd_odometry
    • registration
      • CauchyLoss
      • CorrespondenceChecker
      • CorrespondenceCheckerBasedOnDistance
      • CorrespondenceCheckerBasedOnEdgeLength
      • CorrespondenceCheckerBasedOnNormal
      • FastGlobalRegistrationOption
      • Feature
      • GMLoss
      • GlobalOptimizationConvergenceCriteria
      • GlobalOptimizationGaussNewton
      • GlobalOptimizationLevenbergMarquardt
      • GlobalOptimizationMethod
      • GlobalOptimizationOption
      • HuberLoss
      • ICPConvergenceCriteria
      • L1Loss
      • L2Loss
      • PoseGraph
      • PoseGraphEdge
      • PoseGraphEdgeVector
      • PoseGraphNode
      • PoseGraphNodeVector
      • RANSACConvergenceCriteria
      • RegistrationResult
      • RobustKernel
      • TransformationEstimation
      • TransformationEstimationForColoredICP
      • TransformationEstimationForGeneralizedICP
      • TransformationEstimationPointToPlane
      • TransformationEstimationPointToPoint
      • TukeyLoss
      • compute_fpfh_feature
      • correspondences_from_features
      • evaluate_registration
      • get_information_matrix_from_point_clouds
      • global_optimization
      • registration_colored_icp
      • registration_fgr_based_on_correspondence
      • registration_fgr_based_on_feature_matching
      • registration_generalized_icp
      • registration_icp
      • registration_ransac_based_on_correspondence
      • registration_ransac_based_on_feature_matching
  • cloudViewer.utility
    • DoubleVector
    • IntVector
    • Matrix
    • Matrix3dVector
    • Matrix4dVector
    • Range
    • ScalarField
    • Vector2dVector
    • Vector2iVector
    • Vector3dVector
    • Vector3iVector
    • Vector4iVector
    • VerbosityContextManager
    • VerbosityLevel
    • ccScalarField
    • get_verbosity_level
    • reset_print_function
    • set_verbosity_level
  • cloudViewer.visualization
    • ItemsView
    • KeysView
    • Material
    • MeshColorOption
    • MeshShadeOption
    • O3DVisualizer
    • PickedPoint
    • PointColorOption
    • RenderOption
    • ScalarProperties
    • SelectedIndex
    • SelectionPolygonVolume
    • TextureMaps
    • ValuesView
    • VectorProperties
    • ViewControl
    • Visualizer
    • VisualizerWithEditing
    • VisualizerWithKeyCallback
    • VisualizerWithVertexSelection
    • draw_geometries
    • draw_geometries_with_animation_callback
    • draw_geometries_with_custom_animation
    • draw_geometries_with_editing
    • draw_geometries_with_key_callbacks
    • draw_geometries_with_vertex_selection
    • read_selection_polygon_volume
    • ExternalVisualizer
    • draw
    • draw_plotly
    • draw_plotly_server
    • get_plotly_fig
    • to_mitsuba
    • app
      • run_viewer
    • gui
      • Application
      • Window
      • WindowBase
      • Dialog
      • SceneWidget
      • Widget
      • Horiz
      • Vert
      • CollapsableVert
      • ScrollableVert
      • StackedWidget
      • LayoutContext
      • Margins
      • Button
      • Checkbox
      • Combobox
      • ColorEdit
      • NumberEdit
      • RadioButton
      • Slider
      • TextEdit
      • ToggleSwitch
      • VectorEdit
      • Label
      • Label3D
      • ImageWidget
      • ListView
      • ProgressBar
      • TabControl
      • TreeView
      • CheckableTextTreeCell
      • ColormapTreeCell
      • LUTTreeCell
      • FileDialog
      • Menu
      • Theme
      • Color
      • FontDescription
      • FontStyle
      • KeyEvent
      • KeyModifier
      • KeyName
      • Layout1D
      • MouseButton
      • MouseEvent
      • Size
      • Rect
      • UIImage
      • VGrid
      • WidgetProxy
      • WidgetStack
    • rendering
      • Camera
      • CloudViewerScene
      • ColorGrading
      • Gradient
      • MaterialRecord
      • OffscreenRenderer
      • Renderer
      • Scene
      • TextureHandle
      • TriangleMeshModel
      • View
    • webrtc_server
      • call_http_api
      • disable_http_handshake
      • enable_webrtc
      • register_data_channel_message_callback
    • tensorboard_plugin.summary
      • BoundingBox3D
      • PluginDirectory
      • Summary
      • SummaryWriter
      • TensorProto
      • TensorShapeProto
      • add_3d
      • makedirs
      • masked_crc32c
      • partial

Python Examples

  • Camera
  • Core
  • Geometry
    • Geometry
    • Image
    • KD Tree
    • Octree
    • Point Cloud
    • Ray Casting
    • RGBD Image
    • Triangle Mesh
    • Voxel Grid
  • IO
  • Pipelines
  • Reconstruction
  • Utility
  • Visualization

C++ Examples

  • C++ Examples

C++ API

  • C++ documentation
    • Overview
    • Quick Start
    • Plugin System

Developer Guide

  • Contributing to ACloudViewer
  • Docker Development
  • CI/CD Pipeline

Resources

  • Changelog
  • Frequently Asked Questions
  • Getting Support
Back to top

cloudViewer.ml.torch.ops.fixed_radius_search#

cloudViewer.ml.torch.ops.fixed_radius_search(points, queries, radius, points_row_splits, queries_row_splits, hash_table_splits, hash_table_index, hash_table_cell_splits, index_dtype=3, metric='L2', ignore_query_point=False, return_distances=False)[source]#

Computes the indices of all neighbors within a radius.

This op computes the neighborhood for each query point and returns the indices of the neighbors and optionally also the distances. The same fixed radius is used for each query point. Points and queries can be batched with each batch item having an individual number of points and queries. The following example shows a simple search with just a single batch item:

import cloudViewer.ml.tf as ml3d

points = [
  [0.1,0.1,0.1],
  [0.5,0.5,0.5],
  [1.7,1.7,1.7],
  [1.8,1.8,1.8],
  [0.3,2.4,1.4]]

queries = [
    [1.0,1.0,1.0],
    [0.5,2.0,2.0],
    [0.5,2.1,2.1],
]

radius = 1.0

# build the spatial hash table for fixex_radius_search
table = ml3d.ops.build_spatial_hash_table(points,
                                          radius,
                                          points_row_splits=torch.LongTensor([0,5]),
                                          hash_table_size_factor=1/32)

# now run the fixed radius search
ml3d.ops.fixed_radius_search(points,
                             queries,
                             radius,
                             points_row_splits=torch.LongTensor([0,5]),
                             queries_row_splits=torch.LongTensor([0,3]),
                             **table._asdict())
# returns neighbors_index      = [1, 4, 4]
#         neighbors_row_splits = [0, 1, 2, 3]
#         neighbors_distance   = []

# or with pytorch
import torch
import cloudViewer.ml.torch as ml3d

points = torch.Tensor([
  [0.1,0.1,0.1],
  [0.5,0.5,0.5],
  [1.7,1.7,1.7],
  [1.8,1.8,1.8],
  [0.3,2.4,1.4]])

queries = torch.Tensor([
    [1.0,1.0,1.0],
    [0.5,2.0,2.0],
    [0.5,2.1,2.1],
])

radius = 1.0

# build the spatial hash table for fixex_radius_search
table = ml3d.ops.build_spatial_hash_table(points,
                                          radius,
                                          points_row_splits=torch.LongTensor([0,5]),
                                          hash_table_size_factor=1/32)

# now run the fixed radius search
ml3d.ops.fixed_radius_search(points,
                             queries,
                             radius,
                             points_row_splits=torch.LongTensor([0,5]),
                             queries_row_splits=torch.LongTensor([0,3]),
                             **table._asdict())
# returns neighbors_index      = [1, 4, 4]
#         neighbors_row_splits = [0, 1, 2, 3]
#         neighbors_distance   = []
index_dtype:

The data type for the returned neighbor_index Tensor. Either int32 or int64. Default is int32.

metric:

Either L1, L2 or Linf. Default is L2

ignore_query_point:

If true the points that coincide with the center of the search window will be ignored. This excludes the query point if ‘queries’ and ‘points’ are the same point cloud.

return_distances:

If True the distances for each neighbor will be returned in the tensor ‘neighbors_distance’. If False a zero length Tensor will be returned for ‘neighbors_distance’.

points:

The 3D positions of the input points.

queries:

The 3D positions of the query points.

radius:

A scalar with the neighborhood radius

points_row_splits:

1D vector with the row splits information if points is batched. This vector is [0, num_points] if there is only 1 batch item.

queries_row_splits:

1D vector with the row splits information if queries is batched. This vector is [0, num_queries] if there is only 1 batch item.

hash_table_splits: Array defining the start and end the hash table

for each batch item. This is [0, number of cells] if there is only 1 batch item or [0, hash_table_cell_splits_size-1] which is the same.

hash_table_index: Stores the values of the hash table, which are the indices of

the points. The start and end of each cell is defined by hash_table_cell_splits.

hash_table_cell_splits: Defines the start and end of each hash table cell.

neighbors_index:

The compact list of indices of the neighbors. The corresponding query point can be inferred from the ‘neighbor_count_row_splits’ vector.

neighbors_row_splits:

The exclusive prefix sum of the neighbor count for the query points including the total neighbor count as the last element. The size of this array is the number of queries + 1.

neighbors_distance:

Stores the distance to each neighbor if ‘return_distances’ is True. Note that the distances are squared if metric is L2. This is a zero length Tensor if ‘return_distances’ is False.

Next
cloudViewer.ml.torch.ops.invert_neighbors_list
Previous
cloudViewer.ml.torch.ops.continuous_conv_transpose
Copyright © 2018 - 2026, ACloudViewer Team
Made with Sphinx and @pradyunsg's Furo
On this page
  • cloudViewer.ml.torch.ops.fixed_radius_search
    • fixed_radius_search()