cloudViewer.ml.torch.pipelines.ObjectDetection#

class cloudViewer.ml.torch.pipelines.ObjectDetection(model, dataset=None, name='ObjectDetection', main_log_dir='./logs/', device='cuda', split='train', **kwargs)[source]#

Pipeline for object detection.

__init__(model, dataset=None, name='ObjectDetection', main_log_dir='./logs/', device='cuda', split='train', **kwargs)[source]#

Initialize.

Parameters:
  • model – A network model.

  • dataset – A dataset, or None for inference model.

  • devce – ‘gpu’ or ‘cpu’.

  • kwargs

Returns:

The corresponding class.

Return type:

class

load_ckpt(ckpt_path=None, is_resume=True)[source]#
run_inference(data)[source]#

Run inference on given data.

Parameters:

data – A raw data.

Returns:

Returns the inference results.

run_test()[source]#

Run test with test data split, computes mean average precision of the prediction results.

run_train()[source]#

Run training with train data split.

run_valid()[source]#

Run validation with validation data split, computes mean average precision and the loss of the prediction results.

save_ckpt(epoch)[source]#
save_config(writer)[source]#

Save experiment configuration with tensorboard summary.

save_logs(writer, epoch)[source]#