cloudViewer.ml.torch.pipelines.ObjectDetection#
- class cloudViewer.ml.torch.pipelines.ObjectDetection(model, dataset=None, name='ObjectDetection', main_log_dir='./logs/', device='cuda', split='train', **kwargs)[source]#
Pipeline for object detection.
- __init__(model, dataset=None, name='ObjectDetection', main_log_dir='./logs/', device='cuda', split='train', **kwargs)[source]#
Initialize.
- Parameters:
model – A network model.
dataset – A dataset, or None for inference model.
devce – ‘gpu’ or ‘cpu’.
kwargs –
- Returns:
The corresponding class.
- Return type:
class
- run_inference(data)[source]#
Run inference on given data.
- Parameters:
data – A raw data.
- Returns:
Returns the inference results.
- run_test()[source]#
Run test with test data split, computes mean average precision of the prediction results.