cloudViewer.geometry.KDTreeFlann#
- class cloudViewer.geometry.KDTreeFlann#
KDTree with FLANN for nearest neighbor search.
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cloudViewer.geometry.KDTreeFlann) -> None
__init__(self: cloudViewer.geometry.KDTreeFlann, data: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, “[m, n]”]) -> None
__init__(self: cloudViewer.geometry.KDTreeFlann, geometry: cloudViewer.geometry.ccHObject) -> None
__init__(self: cloudViewer.geometry.KDTreeFlann, feature: cloudViewer::utility::Feature) -> None
- query_vector_3d(self: cloudViewer.geometry.KDTreeFlann, queries: cloudViewer.utility.Vector3dVector, search_param: cloudViewer.geometry.KDTreeSearchParam) tuple[int, list[cloudViewer.utility.IntVector], list[cloudViewer.utility.DoubleVector]]#
- query_vector_xd(self: cloudViewer.geometry.KDTreeFlann, queries: collections.abc.Sequence[Annotated[numpy.typing.ArrayLike, numpy.float64, '[m, 1]']], search_param: cloudViewer.geometry.KDTreeSearchParam) tuple[int, list[cloudViewer.utility.IntVector], list[cloudViewer.utility.DoubleVector]]#
- search_hybrid_vector_3d(self, query, radius, max_nn)#
- Parameters:
query (Annotated[numpy.typing.ArrayLike, numpy.float64,) – The input query point.
radius (SupportsFloat) – Search radius.
max_nn (SupportsInt) – At maximum,
max_nnneighbors will be searched.
- Returns:
tuple[int, cloudViewer.utility.IntVector, cloudViewer.utility.DoubleVector]
- search_hybrid_vector_xd(self, query, radius, max_nn)#
- Parameters:
query (Annotated[numpy.typing.ArrayLike, numpy.float64,) – The input query point.
radius (SupportsFloat) – Search radius.
max_nn (SupportsInt) – At maximum,
max_nnneighbors will be searched.
- Returns:
tuple[int, cloudViewer.utility.IntVector, cloudViewer.utility.DoubleVector]
- search_knn_vector_3d(self, query, knn)#
- Parameters:
query (Annotated[numpy.typing.ArrayLike, numpy.float64,) – The input query point.
knn (SupportsInt) –
knnneighbors will be searched.
- Returns:
tuple[int, cloudViewer.utility.IntVector, cloudViewer.utility.DoubleVector]
- search_knn_vector_xd(self, query, knn)#
- Parameters:
query (Annotated[numpy.typing.ArrayLike, numpy.float64,) – The input query point.
knn (SupportsInt) –
knnneighbors will be searched.
- Returns:
tuple[int, cloudViewer.utility.IntVector, cloudViewer.utility.DoubleVector]
- search_radius_vector_3d(self, query, radius)#
- Parameters:
query (Annotated[numpy.typing.ArrayLike, numpy.float64,) – The input query point.
radius (SupportsFloat) – Search radius.
- Returns:
tuple[int, cloudViewer.utility.IntVector, cloudViewer.utility.DoubleVector]
- search_radius_vector_xd(self, query, radius)#
- Parameters:
query (Annotated[numpy.typing.ArrayLike, numpy.float64,) – The input query point.
radius (SupportsFloat) – Search radius.
- Returns:
tuple[int, cloudViewer.utility.IntVector, cloudViewer.utility.DoubleVector]
- search_vector_3d(self, query, search_param)#
- Parameters:
query (Annotated[numpy.typing.ArrayLike, numpy.float64,) – The input query point.
search_param (cloudViewer.geometry.KDTreeSearchParam) –
- Returns:
tuple[int, cloudViewer.utility.IntVector, cloudViewer.utility.DoubleVector]
- search_vector_xd(self, query, search_param)#
- Parameters:
query (Annotated[numpy.typing.ArrayLike, numpy.float64,) – The input query point.
search_param (cloudViewer.geometry.KDTreeSearchParam) –
- Returns:
tuple[int, cloudViewer.utility.IntVector, cloudViewer.utility.DoubleVector]
- set_feature(self, feature)#
Sets the data for the KDTree from the feature data.
- Parameters:
feature (cloudViewer::utility::Feature) – Feature data.
- Returns:
bool
- set_geometry(self, geometry)#
Sets the data for the KDTree from geometry.
- Parameters:
geometry (cloudViewer.geometry.ccHObject) –
- Returns:
bool