Register fragments#
Once the fragments of the scene are created, the next step is to align them in a global space.
Input arguments#
This script runs with python run_system.py [config] --register. In [config], ["path_dataset"] should have subfolders fragments which stores fragments in .ply files and a pose graph in a .json file.
The main function runs make_posegraph_for_scene and
optimize_posegraph_for_scene. The first function performs pairwise
registration. The second function performs multiway registration.
Preprocess point cloud#
27def preprocess_point_cloud(pcd, config):
28 voxel_size = config["voxel_size"]
29 pcd_down = pcd.voxel_down_sample(voxel_size)
30 pcd_down.estimate_normals(
31 cv3d.geometry.KDTreeSearchParamHybrid(radius=voxel_size * 2.0,
32 max_nn=30))
33 pcd_fpfh = cv3d.pipelines.registration.compute_fpfh_feature(
34 pcd_down,
35 cv3d.geometry.KDTreeSearchParamHybrid(radius=voxel_size * 5.0,
36 max_nn=100))
37 return (pcd_down, pcd_fpfh)
This function downsamples a point cloud to make it sparser and regularly distributed. Normals and FPFH feature are precomputed. See Voxel downsampling, Vertex normal estimation, and Extract geometric feature for more details.
Compute initial registration#
70def compute_initial_registration(s, t, source_down, target_down, source_fpfh,
71 target_fpfh, path_dataset, config):
72
73 if t == s + 1: # odometry case
74 print("Using RGBD odometry")
75 pose_graph_frag = cv3d.io.read_pose_graph(
76 join(path_dataset,
77 config["template_fragment_posegraph_optimized"] % s))
78 n_nodes = len(pose_graph_frag.nodes)
79 transformation_init = np.linalg.inv(pose_graph_frag.nodes[n_nodes -
80 1].pose)
81 (transformation, information) = \
82 multiscale_icp(source_down, target_down,
83 [config["voxel_size"]], [50], config, transformation_init)
84 else: # loop closure case
85 (success, transformation,
86 information) = register_point_cloud_fpfh(source_down, target_down,
87 source_fpfh, target_fpfh,
88 config)
89 if not success:
90 print("No reasonable solution. Skip this pair")
91 return (False, np.identity(4), np.zeros((6, 6)))
92 print(transformation)
93
94 if config["debug_mode"]:
95 draw_registration_result(source_down, target_down, transformation)
96 return (True, transformation, information)
This function computes a rough alignment between two fragments. If the fragments
are neighboring fragments, the rough alignment is determined by an aggregating
RGBD odometry obtained from Make fragments.
Otherwise, register_point_cloud_fpfh is called to perform global
registration. Note that global registration is less reliable according to [Choi2015].
Pairwise global registration#
40def register_point_cloud_fpfh(source, target, source_fpfh, target_fpfh, config):
41 cv3d.utility.set_verbosity_level(cv3d.utility.VerbosityLevel.Debug)
42 distance_threshold = config["voxel_size"] * 1.4
43 if config["global_registration"] == "fgr":
44 result = cv3d.pipelines.registration.registration_fgr_based_on_feature_matching(
45 source, target, source_fpfh, target_fpfh,
46 cv3d.pipelines.registration.FastGlobalRegistrationOption(
47 maximum_correspondence_distance=distance_threshold))
48 if config["global_registration"] == "ransac":
49 # Fallback to preset parameters that works better
50 result = cv3d.pipelines.registration.registration_ransac_based_on_feature_matching(
51 source, target, source_fpfh, target_fpfh, False, distance_threshold,
52 cv3d.pipelines.registration.TransformationEstimationPointToPoint(
53 False), 4, [
54 cv3d.pipelines.registration.
55 CorrespondenceCheckerBasedOnEdgeLength(0.9),
56 cv3d.pipelines.registration.
57 CorrespondenceCheckerBasedOnDistance(distance_threshold)
58 ],
59 cv3d.pipelines.registration.RANSACConvergenceCriteria(
60 1000000, 0.999))
61 if (result.transformation.trace() == 4.0):
62 return (False, np.identity(4), np.zeros((6, 6)))
63 information = cv3d.pipelines.registration.get_information_matrix_from_point_clouds(
64 source, target, distance_threshold, result.transformation)
65 if information[5, 5] / min(len(source.points), len(target.points)) < 0.3:
66 return (False, np.identity(4), np.zeros((6, 6)))
67 return (True, result.transformation, information)
This function uses RANSAC or Fast global registration for pairwise global registration.
Multiway registration#
99def update_posegraph_for_scene(s, t, transformation, information, odometry,
100 pose_graph):
101 if t == s + 1: # odometry case
102 odometry = np.dot(transformation, odometry)
103 odometry_inv = np.linalg.inv(odometry)
104 pose_graph.nodes.append(
105 cv3d.pipelines.registration.PoseGraphNode(odometry_inv))
106 pose_graph.edges.append(
107 cv3d.pipelines.registration.PoseGraphEdge(s,
108 t,
109 transformation,
110 information,
111 uncertain=False))
112 else: # loop closure case
113 pose_graph.edges.append(
114 cv3d.pipelines.registration.PoseGraphEdge(s,
115 t,
116 transformation,
117 information,
118 uncertain=True))
119 return (odometry, pose_graph)
This script uses the technique demonstrated in
Multiway registration. The function
update_posegraph_for_scene builds a pose graph for multiway registration of
all fragments. Each graph node represents a fragment and its pose which
transforms the geometry to the global space.
Once a pose graph is built, the function optimize_posegraph_for_scene is
called for multiway registration.
46def optimize_posegraph_for_scene(path_dataset, config):
47 pose_graph_name = join(path_dataset, config["template_global_posegraph"])
48 pose_graph_optimized_name = join(
49 path_dataset, config["template_global_posegraph_optimized"])
50 run_posegraph_optimization(pose_graph_name, pose_graph_optimized_name,
51 max_correspondence_distance = config["voxel_size"] * 1.4,
52 preference_loop_closure = \
53 config["preference_loop_closure_registration"])
Main registration loop#
The function make_posegraph_for_scene below calls all the functions
introduced above. The main workflow is: pairwise global registration ->
multiway registration.
152def make_posegraph_for_scene(ply_file_names, config):
153 pose_graph = cv3d.pipelines.registration.PoseGraph()
154 odometry = np.identity(4)
155 pose_graph.nodes.append(cv3d.pipelines.registration.PoseGraphNode(odometry))
156
157 n_files = len(ply_file_names)
158 matching_results = {}
159 for s in range(n_files):
160 for t in range(s + 1, n_files):
161 matching_results[s * n_files + t] = matching_result(s, t)
162
163 if config["python_multi_threading"] is True:
164 os.environ['OMP_NUM_THREADS'] = '1'
165 max_workers = max(
166 1, min(multiprocessing.cpu_count() - 1, len(matching_results)))
167 mp_context = multiprocessing.get_context('spawn')
168 with mp_context.Pool(processes=max_workers) as pool:
169 args = [(ply_file_names, v.s, v.t, config)
170 for k, v in matching_results.items()]
171 results = pool.starmap(register_point_cloud_pair, args)
172
173 for i, r in enumerate(matching_results):
174 matching_results[r].success = results[i][0]
175 matching_results[r].transformation = results[i][1]
176 matching_results[r].information = results[i][2]
177 else:
178 for r in matching_results:
179 (matching_results[r].success, matching_results[r].transformation,
180 matching_results[r].information) = \
181 register_point_cloud_pair(ply_file_names,
182 matching_results[r].s, matching_results[r].t, config)
183
184 for r in matching_results:
185 if matching_results[r].success:
186 (odometry, pose_graph) = update_posegraph_for_scene(
187 matching_results[r].s, matching_results[r].t,
188 matching_results[r].transformation,
189 matching_results[r].information, odometry, pose_graph)
190 cv3d.io.write_pose_graph(
191 join(config["path_dataset"], config["template_global_posegraph"]),
192 pose_graph)
Results#
The pose graph optimization outputs the following messages:
[GlobalOptimizationLM] Optimizing PoseGraph having 14 nodes and 42 edges.
Line process weight : 55.885667
[Initial ] residual : 7.791139e+04, lambda : 1.205976e+00
[Iteration 00] residual : 6.094275e+02, valid edges : 22, time : 0.001 sec.
[Iteration 01] residual : 4.526879e+02, valid edges : 22, time : 0.000 sec.
[Iteration 02] residual : 4.515039e+02, valid edges : 22, time : 0.000 sec.
[Iteration 03] residual : 4.514832e+02, valid edges : 22, time : 0.000 sec.
[Iteration 04] residual : 4.514825e+02, valid edges : 22, time : 0.000 sec.
Current_residual - new_residual < 1.000000e-06 * current_residual
[GlobalOptimizationLM] total time : 0.003 sec.
[GlobalOptimizationLM] Optimizing PoseGraph having 14 nodes and 35 edges.
Line process weight : 60.762800
[Initial ] residual : 6.336097e+01, lambda : 1.324043e+00
[Iteration 00] residual : 6.334147e+01, valid edges : 22, time : 0.000 sec.
[Iteration 01] residual : 6.334138e+01, valid edges : 22, time : 0.000 sec.
Current_residual - new_residual < 1.000000e-06 * current_residual
[GlobalOptimizationLM] total time : 0.001 sec.
CompensateReferencePoseGraphNode : reference : 0
There are 14 fragments and 52 valid matching pairs among the fragments. After 23 iterations, 11 edges are detected to be false positives. After they are pruned, pose graph optimization runs again to achieve tight alignment.