KD Tree#
kd_tree_feature_matching.py#
1# ----------------------------------------------------------------------------
2# - CloudViewer: www.cloudViewer.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2024 www.cloudViewer.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import numpy as np
9import cloudViewer as cv3d
10
11if __name__ == "__main__":
12
13 print("Load two aligned point clouds.")
14 demo_data = cv3d.data.DemoFeatureMatchingPointClouds()
15 pcd0 = cv3d.io.read_point_cloud(demo_data.point_cloud_paths[0])
16 pcd1 = cv3d.io.read_point_cloud(demo_data.point_cloud_paths[1])
17
18 pcd0.paint_uniform_color([1, 0.706, 0])
19 pcd1.paint_uniform_color([0, 0.651, 0.929])
20 cv3d.visualization.draw_geometries([pcd0, pcd1])
21 print("Load their FPFH feature and evaluate.")
22 print("Black : matching distance > 0.2")
23 print("White : matching distance = 0")
24 feature0 = cv3d.io.read_feature(demo_data.fpfh_feature_paths[0])
25 feature1 = cv3d.io.read_feature(demo_data.fpfh_feature_paths[1])
26
27 fpfh_tree = cv3d.geometry.KDTreeFlann(feature1)
28 for i in range(len(pcd0.points())):
29 [_, idx, _] = fpfh_tree.search_knn_vector_xd(feature0.data[:, i], 1)
30 dis = np.linalg.norm(pcd0.point(i) - pcd1.point(idx[0]))
31 c = (0.2 - np.fmin(dis, 0.2)) / 0.2
32 pcd0.set_color(i, [c, c, c])
33 cv3d.visualization.draw_geometries([pcd0])
34 print("")
35
36 print("Load their L32D feature and evaluate.")
37 print("Black : matching distance > 0.2")
38 print("White : matching distance = 0")
39 feature0 = cv3d.io.read_feature(demo_data.l32d_feature_paths[0])
40 feature1 = cv3d.io.read_feature(demo_data.l32d_feature_paths[1])
41
42 fpfh_tree = cv3d.geometry.KDTreeFlann(feature1)
43 for i in range(len(pcd0.points())):
44 [_, idx, _] = fpfh_tree.search_knn_vector_xd(feature0.data[:, i], 1)
45 dis = np.linalg.norm(pcd0.point(i) - pcd1.point(idx[0]))
46 c = (0.2 - np.fmin(dis, 0.2)) / 0.2
47 pcd0.set_color(i, [c, c, c])
48 cv3d.visualization.draw_geometries([pcd0])
49 print("")
kd_tree_search.py#
1# ----------------------------------------------------------------------------
2# - CloudViewer: www.cloudViewer.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2024 www.cloudViewer.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7"""Build a KDTree and use it for neighbour search"""
8
9import numpy as np
10import cloudViewer as cv3d
11
12if __name__ == "__main__":
13 print("Testing kdtree in cloudViewer ...")
14 print("Load a point cloud and paint it gray.")
15 sample_pcd_data = cv3d.data.PCDPointCloud()
16 pcd = cv3d.io.read_point_cloud(sample_pcd_data.path)
17 print(pcd)
18 pcd.paint_uniform_color([0.5, 0.5, 0.5])
19 pcd_tree = cv3d.geometry.KDTreeFlann(pcd)
20
21 print("Paint the 1500th point red.")
22 pcd.set_color(1500, [1, 0, 0])
23
24 print("Find its 200 nearest neighbors, paint blue.")
25 [k, idx, _] = pcd_tree.search_knn_vector_3d(pcd.get_point(1500), 200)
26 colors = np.asarray(pcd.get_colors())
27 colors[idx[1:], :] = [0, 0, 1]
28 pcd.set_colors(cv3d.utility.Vector3dVector(colors))
29
30 print("Find its neighbors with distance less than 0.2, paint green.")
31 [k, idx, _] = pcd_tree.search_radius_vector_3d(pcd.get_point(1500), 0.2)
32 colors = np.asarray(pcd.get_colors())
33 colors[idx[1:], :] = [0, 1, 0]
34 pcd.set_colors(cv3d.utility.Vector3dVector(colors))
35
36 print("Visualize the point cloud.")
37 cv3d.visualization.draw_geometries([pcd],
38 zoom=0.5599,
39 front=[-0.4958, 0.8229, 0.2773],
40 lookat=[2.1126, 1.0163, -1.8543],
41 up=[0.1007, -0.2626, 0.9596])
42 print("")