17 template <
class DatasetBase = Dataset>
20 using DatasetBase::DatasetBase;
23 template <
class DownloadDatasetBase = DownloadDataset>
32 "get_custom_downloads_prefix",
34 "Get the current URL prefix for CloudViewer downloads");
36 "set_custom_downloads_prefix",
38 "Set the URL prefix for CloudViewer downloads",
"prefix"_a);
39 m.attr(
"cloudViewer_downloads_prefix") =
45 "DataDescriptor is a class that describes a data file. It contains "
46 "the URL mirrors to download the file, the MD5 hash of the file, "
47 "and whether to extract the file.");
49 .def(py::init([](
const std::vector<std::string>& urls,
50 const std::string& md5,
51 const std::string& extract_in_subdir) {
54 "urls"_a,
"md5"_a,
"extract_in_subdir"_a =
"")
55 .def(py::init([](
const std::string& url,
const std::string& md5,
56 const std::string& extract_in_subdir) {
60 "url"_a,
"md5"_a,
"extract_in_subdir"_a =
"")
62 "URL to download the data file.")
64 "MD5 hash of the data file.")
65 .def_readonly(
"extract_in_subdir",
67 "Subdirectory to extract the file. If empty, the "
68 "file will be extracted in the root extract "
69 "directory of the dataset.");
72 py::class_<Dataset, PyDataset<Dataset>, std::shared_ptr<Dataset>> dataset(
73 m,
"Dataset",
"The base dataset class.");
74 dataset.def(py::init<const std::string&, const std::string&>(),
"prefix"_a,
76 .def_property_readonly(
78 "Get data root directory. The data root is set at "
79 "construction time or automatically determined.")
81 "Get prefix for the dataset.")
82 .def_property_readonly(
84 "Get absolute path to download directory. i.e. "
85 "${data_root}/${download_prefix}/${prefix}")
86 .def_property_readonly(
88 "Get absolute path to extract directory. i.e. "
89 "${data_root}/${extract_prefix}/${prefix}");
96 py::class_<DownloadDataset, PyDownloadDataset<DownloadDataset>,
97 std::shared_ptr<DownloadDataset>,
Dataset>
98 single_download_dataset(m,
"DownloadDataset",
99 "Single file download dataset class.");
100 single_download_dataset.def(
102 const std::string&>(),
103 "prefix"_a,
"data_descriptor"_a,
"data_root"_a =
"");
108 py::class_<DemoICPPointClouds, PyDownloadDataset<DemoICPPointClouds>,
110 demo_icp_pointclouds(
111 m,
"DemoICPPointClouds",
112 "Data class for `DemoICPPointClouds` contains "
113 "3 point clouds of binary PCD format. This "
114 "dataset is used in CloudViewer for ICP demo.");
115 demo_icp_pointclouds.def(py::init<const std::string&>(),
"data_root"_a =
"")
116 .def_property_readonly(
119 return demo_icp_pointclouds.GetPaths();
121 "List of 3 point cloud paths. Use `paths[0]`, `paths[1]`, "
122 "and `paths[2]` to access the paths.")
123 .def_property_readonly(
124 "transformation_log_path",
126 "Path to the transformation metadata log file, containing "
127 "transformation between frame 0 and 1, and frame 1 and 2.");
130 "transformation_log_path");
138 demo_colored_icp_pointclouds(
139 m,
"DemoColoredICPPointClouds",
140 "Data class for `DemoColoredICPPointClouds` contains "
141 "2 point clouds of `ply` format. This dataset is used in "
142 "CloudViewer for colored ICP demo.");
143 demo_colored_icp_pointclouds
144 .def(py::init<const std::string&>(),
"data_root"_a =
"")
145 .def_property_readonly(
148 demo_colored_icp_pointclouds) {
149 return demo_colored_icp_pointclouds.GetPaths();
151 "List of 2 point cloud paths. Use `paths[0]`, and "
152 "`paths[1]`, to access the paths.");
158 py::class_<DemoCropPointCloud, PyDownloadDataset<DemoCropPointCloud>,
160 demo_crop_pointcloud(
161 m,
"DemoCropPointCloud",
162 "Data class for `DemoCropPointCloud` contains a point "
163 "cloud, and `cropped.json` (a saved selected polygon "
164 "volume file). This dataset is used in CloudViewer for "
167 demo_crop_pointcloud.def(py::init<const std::string&>(),
"data_root"_a =
"")
168 .def_property_readonly(
"point_cloud_path",
170 "Path to the example point cloud.")
171 .def_property_readonly(
174 "Path to the saved selected polygon volume file.");
178 "cropped_json_path");
186 demo_doppler_icp_sequence(
187 m,
"DemoDopplerICPSequence",
188 "Data class for `DemoDopplerICPSequence` contains an "
189 "example sequence of 100 point clouds with Doppler "
190 "velocity channel and corresponding ground truth poses. "
191 "The sequence was generated using the CARLA simulator.");
192 demo_doppler_icp_sequence
193 .def(py::init<const std::string&>(),
"data_root"_a =
"")
194 .def_property_readonly(
196 "Returns list of the point cloud paths in the sequence.")
197 .def_property_readonly(
200 "Path to the calibration metadata file, containing "
201 "transformation between the vehicle and sensor frames and "
203 .def_property_readonly(
206 "Path to the ground truth poses for the entire sequence.");
219 demo_feature_matching(
220 m,
"DemoFeatureMatchingPointClouds",
221 "Data class for `DemoFeatureMatchingPointClouds` contains "
222 "2 pointcloud fragments and their respective FPFH features "
223 "and L32D features. This dataset is used in CloudViewer "
225 "point cloud feature matching demo.");
226 demo_feature_matching
227 .def(py::init<const std::string&>(),
"data_root"_a =
"")
228 .def_property_readonly(
231 "List of 2 point cloud paths. Use `point_cloud_paths[0]`, "
232 "and `point_cloud_paths[1]`, to access the paths.")
233 .def_property_readonly(
234 "fpfh_feature_paths",
236 "List of 2 saved FPFH feature binary of the respective "
237 "point cloud paths. Use `fpfh_feature_paths[0]`, "
238 "and `fpfh_feature_paths[1]`, to access the paths.")
239 .def_property_readonly(
240 "l32d_feature_paths",
242 "List of 2 saved L32D feature binary of the respective "
243 "point cloud paths. Use `l32d_feature_paths[0]`, "
244 "and `l32d_feature_paths[1]`, to access the paths.");
246 "point_cloud_paths");
248 "fpfh_feature_paths");
250 "l32d_feature_paths");
258 demo_pose_graph_optimization(
259 m,
"DemoPoseGraphOptimization",
260 "Data class for `DemoPoseGraphOptimization` contains an "
261 "example fragment pose graph, and global pose graph. This "
262 "dataset is used in CloudViewer for pose graph "
265 demo_pose_graph_optimization
266 .def(py::init<const std::string&>(),
"data_root"_a =
"")
267 .def_property_readonly(
268 "pose_graph_fragment_path",
270 "Path to example global pose graph (json).")
271 .def_property_readonly(
272 "pose_graph_global_path",
274 "Path to example fragment pose graph (json).");
276 "pose_graph_fragment_path");
278 "pose_graph_global_path");
286 demo_custom_visualization(
287 m,
"DemoCustomVisualization",
288 "Data class for `DemoCustomVisualization` contains an "
289 "example point-cloud, camera trajectory (json file), "
290 "rendering options (json file). This data is used in "
291 "CloudViewer for custom visualization with camera "
294 demo_custom_visualization
295 .def(py::init<const std::string&>(),
"data_root"_a =
"")
296 .def_property_readonly(
"point_cloud_path",
298 "Returns path to the point cloud (ply).")
299 .def_property_readonly(
300 "camera_trajectory_path",
302 "Returns path to the camera_trajectory.json.")
303 .def_property_readonly(
304 "render_option_path",
306 "Returns path to the renderoption.json.");
310 "camera_trajectory_path");
312 "render_option_path");
317 py::class_<PCDPointCloud, PyDownloadDataset<PCDPointCloud>,
319 pcd_pointcloud(m,
"PCDPointCloud",
320 "Data class for `PCDPointCloud` contains the "
321 "`fragment.pcd` point cloud mesh from the `Redwood "
322 "Living Room` dataset.");
323 pcd_pointcloud.def(py::init<const std::string&>(),
"data_root"_a =
"")
325 "Path to the `pcd` format point cloud.");
331 py::class_<PLYPointCloud, PyDownloadDataset<PLYPointCloud>,
333 ply_pointcloud(m,
"PLYPointCloud",
334 "Data class for `PLYPointCloud` contains the "
335 "`fragment.pcd` point cloud mesh from the `Redwood "
336 "Living Room` dataset.");
337 ply_pointcloud.def(py::init<const std::string&>(),
"data_root"_a =
"")
339 "Path to the `ply` format point cloud.");
345 py::class_<PTSPointCloud, PyDownloadDataset<PTSPointCloud>,
347 pts_point_cloud(m,
"PTSPointCloud",
348 "Data class for `PTSPointCloud` contains a sample "
349 "point-cloud of PTS format.");
350 pts_point_cloud.def(py::init<const std::string&>(),
"data_root"_a =
"")
352 "Path to the PTS format point cloud.");
358 py::class_<SampleNYURGBDImage, PyDownloadDataset<SampleNYURGBDImage>,
360 rgbd_image_nyu(m,
"SampleNYURGBDImage",
361 "Data class for `SampleNYURGBDImage` contains a "
362 "color image `NYU_color.ppm` and a depth image "
363 "`NYU_depth.pgm` sample from NYU RGBD dataset.");
364 rgbd_image_nyu.def(py::init<const std::string&>(),
"data_root"_a =
"")
365 .def_property_readonly(
"color_path",
367 "Path to color image sample.")
368 .def_property_readonly(
"depth_path",
370 "Path to depth image sample.");
377 py::class_<SampleSUNRGBDImage, PyDownloadDataset<SampleSUNRGBDImage>,
379 rgbd_image_sun(m,
"SampleSUNRGBDImage",
380 "Data class for `SampleSUNRGBDImage` contains a "
381 "color image `SUN_color.jpg` and a depth image "
382 "`SUN_depth.png` sample from SUN RGBD dataset.");
383 rgbd_image_sun.def(py::init<const std::string&>(),
"data_root"_a =
"")
384 .def_property_readonly(
"color_path",
386 "Path to color image sample.")
387 .def_property_readonly(
"depth_path",
389 "Path to depth image sample.");
396 py::class_<SampleTUMRGBDImage, PyDownloadDataset<SampleTUMRGBDImage>,
398 rgbd_image_tum(m,
"SampleTUMRGBDImage",
399 "Data class for `SampleTUMRGBDImage` contains a "
400 "color image `TUM_color.png` and a depth image "
401 "`TUM_depth.png` sample from TUM RGBD dataset.");
402 rgbd_image_tum.def(py::init<const std::string&>(),
"data_root"_a =
"")
403 .def_property_readonly(
"color_path",
405 "Path to color image sample.")
406 .def_property_readonly(
"depth_path",
408 "Path to depth image sample.");
418 rgbd_dataset_redwood(
419 m,
"SampleRedwoodRGBDImages",
420 "Data class for `SampleRedwoodRGBDImages` contains a "
421 "sample set of 5 color and depth images from Redwood RGBD "
422 "dataset living-room1. Additionally it also contains "
423 "camera trajectory log, camera odometry log, rgbd match, "
424 "and point cloud reconstruction obtained using TSDF.");
425 rgbd_dataset_redwood.def(py::init<const std::string&>(),
"data_root"_a =
"")
426 .def_property_readonly(
428 "List of paths to color image samples of size 5. Use "
429 "`color_paths[0]`, `color_paths[1]` ... `color_paths[4]` "
430 "to access the paths.")
431 .def_property_readonly(
433 "List of paths to depth image samples of size 5. Use "
434 "`depth_paths[0]`, `depth_paths[1]` ... `depth_paths[4]` "
435 "to access the paths.")
436 .def_property_readonly(
437 "trajectory_log_path",
439 "Path to camera trajectory log file `trajectory.log`.")
440 .def_property_readonly(
443 "Path to camera odometry log file `odometry.log`.")
444 .def_property_readonly(
447 "Path to color and depth image match file `rgbd.match`.")
448 .def_property_readonly(
449 "reconstruction_path",
451 "Path to pointcloud reconstruction from TSDF.")
452 .def_property_readonly(
453 "camera_intrinsic_path",
455 "Path to pinhole camera intrinsic (json).");
461 "trajectory_log_path");
463 "odometry_log_path");
467 "reconstruction_path");
469 "camera_intrinsic_path");
477 fountain_rgbd_dataset(
478 m,
"SampleFountainRGBDImages",
479 "Data class for `SampleFountainRGBDImages` contains a "
480 "sample set of 33 color and depth images from the "
481 "`Fountain RGBD dataset`. It also contains `camera poses "
482 "at keyframes log` and `mesh reconstruction`. It is used "
483 "in demo of `Color Map Optimization`.");
484 fountain_rgbd_dataset
485 .def(py::init<const std::string&>(),
"data_root"_a =
"")
486 .def_property_readonly(
488 "List of paths to color image samples of size 33. Use "
489 "`color_paths[0]`, `color_paths[1]` ... `color_paths[32]` "
490 "to access the paths.")
491 .def_property_readonly(
493 "List of paths to depth image samples of size 33. Use "
494 "`depth_paths[0]`, `depth_paths[1]` ... `depth_paths[32]` "
495 "to access the paths.")
496 .def_property_readonly(
497 "keyframe_poses_log_path",
499 "Path to camera poses at key frames log file `key.log`.")
500 .def_property_readonly(
501 "reconstruction_path",
503 "Path to mesh reconstruction.");
509 "keyframe_poses_log_path");
511 "reconstruction_path");
516 py::class_<SampleL515Bag, PyDownloadDataset<SampleL515Bag>,
518 sample_l515_bag(m,
"SampleL515Bag",
519 "Data class for `SampleL515Bag` contains the "
520 "`SampleL515Bag.bag` file.");
521 sample_l515_bag.def(py::init<const std::string&>(),
"data_root"_a =
"")
523 "Path to the `SampleL515Bag.bag` file.");
529 py::class_<EaglePointCloud, PyDownloadDataset<EaglePointCloud>,
531 eagle(m,
"EaglePointCloud",
532 "Data class for `EaglePointCloud` contains the "
533 "`EaglePointCloud.ply` file.");
534 eagle.def(py::init<const std::string&>(),
"data_root"_a =
"")
536 "Path to the `EaglePointCloud.ply` file.");
542 py::class_<ArmadilloMesh, PyDownloadDataset<ArmadilloMesh>,
544 armadillo(m,
"ArmadilloMesh",
545 "Data class for `ArmadilloMesh` contains the "
546 "`ArmadilloMesh.ply` from the `Stanford 3D Scanning "
548 armadillo.def(py::init<const std::string&>(),
"data_root"_a =
"")
550 "Path to the `ArmadilloMesh.ply` file.");
556 py::class_<BunnyMesh, PyDownloadDataset<BunnyMesh>,
558 bunny(m,
"BunnyMesh",
559 "Data class for `BunnyMesh` contains the `BunnyMesh.ply` "
561 "the `Stanford 3D Scanning Repository`.");
562 bunny.def(py::init<const std::string&>(),
"data_root"_a =
"")
564 "Path to the `BunnyMesh.ply` file.");
570 py::class_<KnotMesh, PyDownloadDataset<KnotMesh>, std::shared_ptr<KnotMesh>,
573 "Data class for `KnotMesh` contains the `KnotMesh.ply`.");
574 knot.def(py::init<const std::string&>(),
"data_root"_a =
"")
576 "Path to the `KnotMesh.ply` file.");
582 py::class_<MonkeyModel, PyDownloadDataset<MonkeyModel>,
584 monkey(m,
"MonkeyModel",
585 "Data class for `MonkeyModel` contains a monkey model file, "
586 "along with material and various other texture files. The "
587 "model file can be accessed using `path`, however in order "
588 "to access the paths to the texture files one may use "
589 "path_map[\"filename\"]` method.");
590 monkey.def(py::init<const std::string&>(),
"data_root"_a =
"")
591 .def_property_readonly(
593 [](
const MonkeyModel& monkey) {
return monkey.GetPath(); },
594 "Returns the `monkey` model file.")
596 "Returns the map of filename to path. Refer "
597 "documentation page for available options.");
604 py::class_<SwordModel, PyDownloadDataset<SwordModel>,
606 sword(m,
"SwordModel",
607 "Data class for `SwordModel` contains a monkey model file, "
608 "along with material and various other texture files. The "
609 "model file can be accessed using `path`, however in order "
610 "to access the paths to the texture files one may use "
611 "path_map[\"filename\"]` method.");
612 sword.def(py::init<const std::string&>(),
"data_root"_a =
"")
613 .def_property_readonly(
615 [](
const SwordModel& sword) {
return sword.GetPath(); },
616 "Returns the `sword` model file.")
618 "Returns the map of filename to path. Refer "
619 "documentation page for available options.");
626 py::class_<CrateModel, PyDownloadDataset<CrateModel>,
628 crate(m,
"CrateModel",
629 "Data class for `CrateModel` contains a crate model file, "
630 "along with material and various other texture files. The "
631 "model file can be accessed using `path`, however in order "
632 "to access the paths to the texture files one may use "
633 "path_map[\"filename\"]` method.");
634 crate.def(py::init<const std::string&>(),
"data_root"_a =
"")
635 .def_property_readonly(
637 [](
const CrateModel& crate) {
return crate.GetPath(); },
638 "Returns the `crate` model file.")
640 "Returns the map of filename to path. Refer "
641 "documentation page for available options.");
648 py::class_<FlightHelmetModel, PyDownloadDataset<FlightHelmetModel>,
650 helmet(m,
"FlightHelmetModel",
651 "Data class for `FlightHelmetModel` contains a flight "
652 "helmet GLTF model file, along with material and various "
653 "other texture files. The model file can be accessed using "
654 "`path`, however in order to access the paths to the "
655 "texture files one may use path_map[\"filename\"]` method.");
656 helmet.def(py::init<const std::string&>(),
"data_root"_a =
"")
657 .def_property_readonly(
660 return helmet.GetPath();
662 "Returns the `FlightHelmet.gltf` model file.")
664 "Returns the map of filename to path. Refer "
665 "documentation page for available options.");
672 py::class_<AvocadoModel, PyDownloadDataset<AvocadoModel>,
674 avocado(m,
"AvocadoModel",
675 "Data class for `AvocadoModel` contains a avocado model "
677 "along with material and PNG format embedded textures.");
678 avocado.def(py::init<const std::string&>(),
"data_root"_a =
"")
680 "Path to the `AvocadoModel.glb` file.");
686 py::class_<DamagedHelmetModel, PyDownloadDataset<DamagedHelmetModel>,
689 m,
"DamagedHelmetModel",
690 "Data class for `DamagedHelmetModel` contains a damaged "
691 "helmet model file, "
692 "along with material and JPG format embedded textures. ");
693 damaged_helmet.def(py::init<const std::string&>(),
"data_root"_a =
"")
694 .def_property_readonly(
696 "Path to the `DamagedHelmetModel.glb` file.");
702 py::class_<MetalTexture, PyDownloadDataset<MetalTexture>,
704 metal_texture(m,
"MetalTexture",
705 "Data class for `MetalTexture` contains albedo, "
706 "normal, roughness and metallic texture files for "
707 "metal based material.");
708 metal_texture.def(py::init<const std::string&>(),
"data_root"_a =
"")
709 .def_property_readonly(
"albedo_texture_path",
711 "Path to albedo color texture image.")
712 .def_property_readonly(
"normal_texture_path",
714 "Path to normal texture image.")
715 .def_property_readonly(
"roughness_texture_path",
717 "Path to roughness texture image.")
718 .def_property_readonly(
"metallic_texture_path",
720 "Path to metallic texture image.")
722 "Returns the map of filename to path.");
726 "roughness_texture_path");
733 py::class_<PaintedPlasterTexture, PyDownloadDataset<PaintedPlasterTexture>,
735 painted_plaster_texture(
736 m,
"PaintedPlasterTexture",
737 "Data class for `PaintedPlasterTexture` contains albedo, "
738 "normal and roughness texture files for painted plaster "
740 painted_plaster_texture
741 .def(py::init<const std::string&>(),
"data_root"_a =
"")
742 .def_property_readonly(
"albedo_texture_path",
744 "Path to albedo color texture image.")
745 .def_property_readonly(
"normal_texture_path",
747 "Path to normal texture image.")
748 .def_property_readonly(
749 "roughness_texture_path",
751 "Path to roughness texture image.")
752 .def_property_readonly(
"path_map",
754 "Returns the map of filename to path.");
756 "albedo_texture_path");
758 "normal_texture_path");
760 "roughness_texture_path");
766 py::class_<TilesTexture, PyDownloadDataset<TilesTexture>,
770 "Data class for `TilesTexture` contains albedo, normal and "
771 "roughness texture files for tiles based material.");
772 tiles_texture.def(py::init<const std::string&>(),
"data_root"_a =
"")
773 .def_property_readonly(
"albedo_texture_path",
775 "Path to albedo color texture image.")
776 .def_property_readonly(
"normal_texture_path",
778 "Path to normal texture image.")
779 .def_property_readonly(
"roughness_texture_path",
781 "Path to roughness texture image.")
783 "Returns the map of filename to path.");
787 "roughness_texture_path");
793 py::class_<TerrazzoTexture, PyDownloadDataset<TerrazzoTexture>,
796 m,
"TerrazzoTexture",
797 "Data class for `TerrazzoTexture` contains albedo, normal "
798 "and roughness texture files for terrazzo based material.");
799 terrazzo_texture.def(py::init<const std::string&>(),
"data_root"_a =
"")
800 .def_property_readonly(
"albedo_texture_path",
802 "Path to albedo color texture image.")
803 .def_property_readonly(
"normal_texture_path",
805 "Path to normal texture image.")
806 .def_property_readonly(
"roughness_texture_path",
808 "Path to roughness texture image.")
810 "Returns the map of filename to path.");
812 "albedo_texture_path");
814 "normal_texture_path");
816 "roughness_texture_path");
822 py::class_<WoodTexture, PyDownloadDataset<WoodTexture>,
826 "Data class for `WoodTexture` contains albedo, normal and "
827 "roughness texture files for wood based material.");
828 wood_texture.def(py::init<const std::string&>(),
"data_root"_a =
"")
829 .def_property_readonly(
"albedo_texture_path",
831 "Path to albedo color texture image.")
832 .def_property_readonly(
"normal_texture_path",
834 "Path to normal texture image.")
835 .def_property_readonly(
"roughness_texture_path",
837 "Path to roughness texture image.")
839 "Returns the map of filename to path.");
848 py::class_<WoodFloorTexture, PyDownloadDataset<WoodFloorTexture>,
850 wood_floor_texture(m,
"WoodFloorTexture",
851 " Data class for `WoodFloorTexture` contains "
852 "albedo, normal and roughness texture files for "
853 "wooden floor based material.");
854 wood_floor_texture.def(py::init<const std::string&>(),
"data_root"_a =
"")
855 .def_property_readonly(
"albedo_texture_path",
857 "Path to albedo color texture image.")
858 .def_property_readonly(
"normal_texture_path",
860 "Path to normal texture image.")
861 .def_property_readonly(
"roughness_texture_path",
863 "Path to roughness texture image.")
865 "Returns the map of filename to path.");
867 "albedo_texture_path");
869 "normal_texture_path");
871 "roughness_texture_path");
877 py::class_<JuneauImage, PyDownloadDataset<JuneauImage>,
879 juneau(m,
"JuneauImage",
880 "Data class for `JuneauImage` contains the "
883 juneau.def(py::init<const std::string&>(),
"data_root"_a =
"")
885 "Path to the `JuneauImage.jgp` file.");
891 py::class_<LivingRoomPointClouds, PyDownloadDataset<LivingRoomPointClouds>,
893 living_room_point_clouds(
894 m,
"LivingRoomPointClouds",
895 "Dataset class for `LivingRoomPointClouds` contains "
896 "57 point clouds of binary PLY format.");
897 living_room_point_clouds
898 .def(py::init<const std::string&>(),
"data_root"_a =
"")
899 .def_property_readonly(
902 return living_room_point_clouds.GetPaths();
904 "List of paths to ply point-cloud fragments of size 57. "
905 "Use `paths[0]`, `paths[1]` ... `paths[56]` to access the "
912 py::class_<OfficePointClouds, PyDownloadDataset<OfficePointClouds>,
915 m,
"OfficePointClouds",
916 "Dataset class for `OfficePointClouds` contains 53 "
917 "point clouds of binary PLY format.");
918 office_point_clouds.def(py::init<const std::string&>(),
"data_root"_a =
"")
919 .def_property_readonly(
922 return office_point_clouds.GetPaths();
924 "List of paths to ply point-cloud fragments of size 53. "
925 "Use `paths[0]`, `paths[1]` ... `paths[52]` to access the "
932 py::class_<LoungeRGBDImages, PyDownloadDataset<LoungeRGBDImages>,
935 m,
"LoungeRGBDImages",
936 "Data class for `LoungeRGBDImages` contains a sample set "
937 "of 3000 color and depth images from Stanford Lounge RGBD "
938 "dataset. Additionally it also contains camera trajectory "
939 "log, and mesh reconstruction.");
940 lounge_rgbd_images.def(py::init<const std::string&>(),
"data_root"_a =
"")
941 .def_property_readonly(
943 "List of paths to color image samples of size 3000. Use "
944 "`color_paths[0]`, `color_paths[1]` ... "
945 "`color_paths[2999]` to access the paths.")
946 .def_property_readonly(
948 "List of paths to depth image samples of size 3000. Use "
949 "`depth_paths[0]`, `depth_paths[1]` ... "
950 "`depth_paths[2999]` to access the paths.")
951 .def_property_readonly(
952 "trajectory_log_path",
954 "Path to camera trajectory log file `trajectory.log`.")
955 .def_property_readonly(
"reconstruction_path",
957 "Path to mesh reconstruction.");
961 "trajectory_log_path");
963 "reconstruction_path");
968 py::class_<BedroomRGBDImages, PyDownloadDataset<BedroomRGBDImages>,
971 m,
"BedroomRGBDImages",
972 "Data class for `BedroomRGBDImages` contains a sample set "
973 "of 21931 color and depth images from Redwood Bedroom RGBD "
974 "dataset. Additionally it also contains camera trajectory "
975 "log, and mesh reconstruction.");
976 lounge_rgbd_images.def(py::init<const std::string&>(),
"data_root"_a =
"")
977 .def_property_readonly(
"color_paths",
979 "List of paths to color image samples of "
980 "size 21931. Use `color_paths[0]`, "
981 "`color_paths[1]` ... `color_paths[21930]` "
982 "to access the paths.")
983 .def_property_readonly(
985 "List of paths to depth image samples of size 21931. Use "
986 "`depth_paths[0]`, `depth_paths[1]` ... "
987 "`depth_paths[21930]` to access the paths.")
988 .def_property_readonly(
989 "trajectory_log_path",
991 "Path to camera trajectory log file `trajectory.log`.")
992 .def_property_readonly(
"reconstruction_path",
994 "Path to mesh reconstruction.");
998 "trajectory_log_path");
1000 "reconstruction_path");
1005 py::class_<JackJackL515Bag, PyDownloadDataset<JackJackL515Bag>,
1007 jackjack_l515_bag(m,
"JackJackL515Bag",
1008 "Data class for `SampleL515Bag` contains the "
1009 "`JackJackL515Bag.bag` file.");
1010 jackjack_l515_bag.def(py::init<const std::string&>(),
"data_root"_a =
"")
1012 "Path to the `JackJackL515Bag.bag` file.");
1020 dataset(m,
"RedwoodIndoorLivingRoom1",
1021 R
"doc(RedwoodIndoorLivingRoom1 (Augmented ICL-NUIM Dataset)
1022 Data class for `RedwoodIndoorLivingRoom1`, containing dense point
1023 cloud, rgb sequence, clean depth sequence, noisy depth sequence, oni
1024 sequence, and ground-truth camera trajectory. ::
1026 RedwoodIndoorLivingRoom1
1044 |-- livingroom1-traj.txt
1047 dataset.def(py::init<const std::string&>(), "data_root"_a =
"");
1048 dataset.def_property_readonly(
"point_cloud_path",
1050 "Path to the point cloud.");
1051 dataset.def_property_readonly(
"color_paths",
1053 "List of paths to color images.");
1054 dataset.def_property_readonly(
"depth_paths",
1056 "List of paths to depth images.");
1057 dataset.def_property_readonly(
"noisy_depth_paths",
1059 "List of paths to noisy depth images.");
1060 dataset.def_property_readonly(
"oni_path",
1062 "Path to the oni file.");
1063 dataset.def_property_readonly(
"trajectory_path",
1065 "Path to the trajectory file.");
1066 dataset.def_property_readonly(
"noise_model_path",
1068 "Path to the noise model file.");
1072 py::class_<RedwoodIndoorLivingRoom2,
1073 PyDownloadDataset<RedwoodIndoorLivingRoom2>,
1074 std::shared_ptr<RedwoodIndoorLivingRoom2>, DownloadDataset>
1075 dataset(m,
"RedwoodIndoorLivingRoom2",
1076 R
"doc(RedwoodIndoorLivingRoom2 (Augmented ICL-NUIM Dataset)
1077 Data class for `RedwoodIndoorLivingRoom2`, containing dense point
1078 cloud, rgb sequence, clean depth sequence, noisy depth sequence, oni
1079 sequence, and ground-truth camera trajectory. ::
1081 RedwoodIndoorLivingRoom2
1099 |-- livingroom2-traj.txt
1102 dataset.def(py::init<const std::string&>(), "data_root"_a =
"");
1103 dataset.def_property_readonly(
"point_cloud_path",
1105 "Path to the point cloud.");
1106 dataset.def_property_readonly(
"color_paths",
1108 "List of paths to color images.");
1109 dataset.def_property_readonly(
"depth_paths",
1111 "List of paths to depth images.");
1112 dataset.def_property_readonly(
"noisy_depth_paths",
1114 "List of paths to noisy depth images.");
1115 dataset.def_property_readonly(
"oni_path",
1117 "Path to the oni file.");
1118 dataset.def_property_readonly(
"trajectory_path",
1120 "Path to the trajectory file.");
1121 dataset.def_property_readonly(
"noise_model_path",
1123 "Path to the noise model file.");
1127 py::class_<RedwoodIndoorOffice1, PyDownloadDataset<RedwoodIndoorOffice1>,
1128 std::shared_ptr<RedwoodIndoorOffice1>, DownloadDataset>
1129 dataset(m,
"RedwoodIndoorOffice1",
1130 R
"doc(RedwoodIndoorOffice1 (Augmented ICL-NUIM Dataset)
1131 Data class for `RedwoodIndoorOffice1`, containing dense point
1132 cloud, rgb sequence, clean depth sequence, noisy depth sequence, oni
1133 sequence, and ground-truth camera trajectory. ::
1135 RedwoodIndoorOffice1
1153 |-- office1-traj.txt
1156 dataset.def(py::init<const std::string&>(), "data_root"_a =
"");
1157 dataset.def_property_readonly(
"point_cloud_path",
1159 "Path to the point cloud.");
1160 dataset.def_property_readonly(
"color_paths",
1162 "List of paths to color images.");
1163 dataset.def_property_readonly(
"depth_paths",
1165 "List of paths to depth images.");
1166 dataset.def_property_readonly(
"noisy_depth_paths",
1168 "List of paths to noisy depth images.");
1170 "Path to the oni file.");
1171 dataset.def_property_readonly(
"trajectory_path",
1173 "Path to the trajectory file.");
1174 dataset.def_property_readonly(
"noise_model_path",
1176 "Path to the noise model file.");
1180 py::class_<RedwoodIndoorOffice2, PyDownloadDataset<RedwoodIndoorOffice2>,
1181 std::shared_ptr<RedwoodIndoorOffice2>, DownloadDataset>
1182 dataset(m,
"RedwoodIndoorOffice2",
1183 R
"doc(RedwoodIndoorOffice2 (Augmented ICL-NUIM Dataset)
1184 Data class for `RedwoodIndoorOffice2`, containing dense point
1185 cloud, rgb sequence, clean depth sequence, noisy depth sequence, oni
1186 sequence, and ground-truth camera trajectory. ::
1188 RedwoodIndoorOffice2
1206 |-- office2-traj.txt
1209 dataset.def(py::init<const std::string&>(), "data_root"_a =
"");
1210 dataset.def_property_readonly(
"point_cloud_path",
1212 "Path to the point cloud.");
1213 dataset.def_property_readonly(
"color_paths",
1215 "List of paths to color images.");
1216 dataset.def_property_readonly(
"depth_paths",
1218 "List of paths to depth images.");
1219 dataset.def_property_readonly(
"noisy_depth_paths",
1221 "List of paths to noisy depth images.");
1223 "Path to the oni file.");
1224 dataset.def_property_readonly(
"trajectory_path",
1226 "Path to the trajectory file.");
1227 dataset.def_property_readonly(
"noise_model_path",
1229 "Path to the noise model file.");
1234 py::class_<FacetsModel, PyDownloadDataset<FacetsModel>,
1235 std::shared_ptr<FacetsModel>, DownloadDataset>
1236 facets_model(m,
"FacetsModel",
1237 "Data class for `FacetsModel` contains the "
1238 "`facets.bin` from the `CloudViewer` project.");
1239 facets_model.def(py::init<const std::string&>(),
"data_root"_a =
"")
1241 "Path to the `facets.bin` file.");
1247 py::class_<PolylinesModel, PyDownloadDataset<PolylinesModel>,
1248 std::shared_ptr<PolylinesModel>, DownloadDataset>
1249 polylines_model(m,
"PolylinesModel",
1250 "Data class for `PolylinesModel` contains the "
1251 "`polylines.bin` from the `CloudViewer` project.");
1252 polylines_model.def(py::init<const std::string&>(),
"data_root"_a =
"")
1254 "Path to the `polylines.bin` file.");
1260 py::class_<BalusterVase, PyDownloadDataset<BalusterVase>,
1261 std::shared_ptr<BalusterVase>, DownloadDataset>
1262 baluster_vase(m,
"BalusterVase",
1263 "Data class for `BalusterVase` contains the "
1264 "`F1980_baluster_vase.glb` from the `CloudViewer` "
1266 baluster_vase.def(py::init<const std::string&>(),
"data_root"_a =
"")
1267 .def_property_readonly(
1269 "Path to the `F1980_baluster_vase.glb` file.");
1274 py::module m_submodule = m.def_submodule(
"data",
"Data handling module.");
std::string GetPath() const
Path to the ArmadilloMesh.ply file.
std::string GetPath() const
Path to the GLB format avocado model.
std::string GetPath() const
Path to the F1980_baluster_vase.glb file.
std::string GetTrajectoryLogPath() const
Path to camera trajectory log file lounge_trajectory.log.
std::vector< std::string > GetDepthPaths() const
Returns List of paths to depth image samples of size 21931.
std::string GetReconstructionPath() const
Path to mesh reconstruction bedroom.ply.
std::vector< std::string > GetColorPaths() const
Returns List of paths to color image samples of size 21931.
std::string GetPath() const
Path to the BunnyMesh.ply file.
Data class for CrateModel contains a sword model file, along with material and various other texture ...
std::unordered_map< std::string, std::string > GetPathMap() const
Returns the map of filename to path. Refer documentation page for available options.
std::string GetPath() const
Path to the GLB format damaged helmet model.
Base CloudViewer dataset class.
const std::string GetPrefix() const
Get prefix for the dataset.
const std::string GetDataRoot() const
Get data root directory. The data root is set at construction time or automatically determined.
const std::string GetExtractDir() const
Get absolute path to extract directory. i.e. ${data_root}/extract/${prefix}.
const std::string GetDownloadDir() const
Get absolute path to download directory. i.e. ${data_root}/download/${prefix}.
Data class for DemoColoredICPPointClouds contains 2 point clouds of PLY format. This data is used in ...
std::string GetPointCloudPath() const
Path to example point cloud.
std::string GetCroppedJSONPath() const
Path to saved selected polygon volume file.
Data class for DemoCustomVisualization contains an example point-cloud, camera trajectory (json file)...
std::string GetTrajectoryPath() const
Path to the camera_trajectory.json.
std::string GetPointCloudPath() const
Path to the point cloud (ply).
std::string GetRenderOptionPath() const
Path to the renderoption.json.
Data class for DemoDopplerICPSequence contains an example sequence of 100 point clouds with Doppler v...
std::vector< std::string > GetPaths() const
Returns the list of the point cloud paths in the sequence.
std::string GetCalibrationPath() const
Path to the calibration metadata file, containing transformation between the vehicle and sensor frame...
std::string GetTrajectoryPath() const
Path to the ground truth poses for the entire sequence.
Data class for DemoFeatureMatchingPointClouds contains 2 point cloud fragments and their respective F...
std::vector< std::string > GetFPFHFeaturePaths() const
Returns list of paths to saved FPFH features binary for point clouds, respectively,...
std::vector< std::string > GetL32DFeaturePaths() const
Returns list of paths to saved L32D features binary for point clouds, respectively,...
std::vector< std::string > GetPointCloudPaths() const
Returns list of paths to point clouds, of size 2.
Data class for DemoICPPointClouds contains 3 point clouds of binary PCD format. This data is used in ...
std::string GetTransformationLogPath() const
Path to the transformation metadata log file, containing transformation between frame 0 and 1,...
Data class for DemoPoseGraphOptimization contains an example fragment pose graph, and global pose gra...
std::string GetPoseGraphFragmentPath() const
Path to example global pose graph (json).
std::string GetPoseGraphGlobalPath() const
Path to example fragment pose graph (json).
Dataset class with one or more downloaded file.
std::string GetPath() const
Path to the EaglePointCloud.ply file.
std::string GetPath() const
Path to the facets.bin file.
Data class for FlightHelmetModel contains a flight helmet model file, along with material and various...
std::unordered_map< std::string, std::string > GetPathMap() const
Returns the map of filename to path. Refer documentation page for available options.
std::string GetPath() const
Path to the JackJackL515Bag.bag file.
std::string GetPath() const
Path to the JuneauImage.jgp file.
std::string GetPath() const
Path to the KnotMesh.ply file.
Dataset class for LivingRoomPointClouds contains 57 point clouds of binary PLY format.
std::string GetReconstructionPath() const
Path to mesh reconstruction lounge.ply.
std::vector< std::string > GetDepthPaths() const
Returns List of paths to depth image samples of size 3000.
std::vector< std::string > GetColorPaths() const
Returns List of paths to color image samples of size 3000.
std::string GetTrajectoryLogPath() const
Path to camera trajectory log file lounge_trajectory.log.
std::string GetAlbedoTexturePath() const
Returns the path to albedo color texture image.
std::string GetMetallicTexturePath() const
Returns the path to metallic texture image.
std::string GetRoughnessTexturePath() const
Returns the path to roughness texture image.
std::string GetNormalTexturePath() const
Returns the path to normal texture image.
std::unordered_map< std::string, std::string > GetPathMap() const
Returns the map of filename to path. Refer documentation page for available options.
Data class for MonkeyModel contains a monkey model file, along with material and various other textur...
std::unordered_map< std::string, std::string > GetPathMap() const
Returns the map of filename to path. Refer documentation page for available options.
Dataset class for OfficePointClouds contains 53 point clouds of binary PLY format.
std::string GetPath() const
Path to the pcd format point cloud.
std::string GetPath() const
Path to the PLY format point cloud.
std::string GetPath() const
Path to the PTS format point cloud.
std::unordered_map< std::string, std::string > GetPathMap() const
Returns the map of filename to path. Refer documentation page for available options.
std::string GetNormalTexturePath() const
Returns the path to normal texture image.
std::string GetRoughnessTexturePath() const
Returns the path to roughness texture image.
std::string GetAlbedoTexturePath() const
Returns the path to albedo color texture image.
std::string GetPath() const
Path to the polylines.bin file.
Data class for RedwoodIndoorLivingRoom1, containing dense point cloud, rgb sequence,...
std::string GetNoiseModelPath() const
Path to the noise model.
std::vector< std::string > GetColorPaths() const
Paths to the color images.
std::string GetPointCloudPath() const
Path to the point cloud.
std::vector< std::string > GetNoisyDepthPaths() const
Paths to the noisy depth images.
std::vector< std::string > GetDepthPaths() const
Paths to the clean depth images.
std::string GetONIPath() const
Paths to the ONI sequence.
std::string GetTrajectoryPath() const
Path to the ground-truth camera trajectory.
std::string GetNoiseModelPath() const
Path to the noise model.
std::vector< std::string > GetColorPaths() const
Paths to the color images.
std::vector< std::string > GetNoisyDepthPaths() const
Paths to the noisy depth images.
std::string GetPointCloudPath() const
Path to the point cloud.
std::string GetTrajectoryPath() const
Path to the ground-truth camera trajectory.
std::string GetONIPath() const
Paths to the ONI sequence.
std::vector< std::string > GetDepthPaths() const
Paths to the clean depth images.
std::string GetTrajectoryPath() const
Path to the ground-truth camera trajectory.
std::vector< std::string > GetDepthPaths() const
Paths to the clean depth images.
std::string GetPointCloudPath() const
Path to the point cloud.
std::string GetONIPath() const
Paths to the ONI sequence.
std::string GetNoiseModelPath() const
Path to the noise model.
std::vector< std::string > GetNoisyDepthPaths() const
Paths to the noisy depth images.
std::vector< std::string > GetColorPaths() const
Paths to the color images.
std::vector< std::string > GetDepthPaths() const
Paths to the clean depth images.
std::string GetTrajectoryPath() const
Path to the ground-truth camera trajectory.
std::vector< std::string > GetColorPaths() const
Paths to the color images.
std::vector< std::string > GetNoisyDepthPaths() const
Paths to the noisy depth images.
std::string GetONIPath() const
Paths to the ONI sequence.
std::string GetPointCloudPath() const
Path to the point cloud.
std::string GetNoiseModelPath() const
Path to the noise model.
Data class for SampleFountainRGBDImages contains a sample set of 33 color and depth images from the F...
std::vector< std::string > GetColorPaths() const
Returns List of paths to color image samples of size 33.
std::string GetKeyframePosesLogPath() const
Path to camera poses at key frames log file key.log.
std::string GetReconstructionPath() const
Path to mesh reconstruction.
std::vector< std::string > GetDepthPaths() const
Returns List of paths to depth image samples of size 33.
std::string GetPath() const
Path to the SampleL515Bag.bag file.
std::string GetDepthPath() const
Path to depth image sample.
std::string GetColorPath() const
Path to color image sample.
Data class for SampleRedwoodRGBDImages contains a sample set of 5 color and depth images from Redwood...
std::string GetOdometryLogPath() const
Path to camera trajectory log file odometry.log.
std::string GetTrajectoryLogPath() const
Path to camera trajectory log file trajectory.log.
std::vector< std::string > GetDepthPaths() const
Returns List of paths to depth image samples of size 5.
std::string GetReconstructionPath() const
Path to point cloud reconstruction from TSDF.
std::string GetRGBDMatchPath() const
Path to color and depth image match file rgbd.match.
std::string GetCameraIntrinsicPath() const
Path to pinhole camera intrinsic (json).
std::vector< std::string > GetColorPaths() const
Returns List of paths to color image samples of size 5.
std::string GetColorPath() const
Path to color image sample.
std::string GetDepthPath() const
Path to depth image sample.
std::string GetColorPath() const
Path to color image sample.
std::string GetDepthPath() const
Path to depth image sample.
Data class for SwordModel contains a sword model file, along with material and various other texture ...
std::unordered_map< std::string, std::string > GetPathMap() const
Returns the map of filename to path. Refer documentation page for available options.
std::string GetNormalTexturePath() const
Returns the path to normal texture image.
std::string GetAlbedoTexturePath() const
Returns the path to albedo color texture image.
std::unordered_map< std::string, std::string > GetPathMap() const
Returns the map of filename to path. Refer documentation page for available options.
std::string GetRoughnessTexturePath() const
Returns the path to roughness texture image.
std::string GetNormalTexturePath() const
Returns the path to normal texture image.
std::string GetAlbedoTexturePath() const
Returns the path to albedo color texture image.
std::unordered_map< std::string, std::string > GetPathMap() const
Returns the map of filename to path. Refer documentation page for available options.
std::string GetRoughnessTexturePath() const
Returns the path to roughness texture image.
std::string GetRoughnessTexturePath() const
Returns the path to roughness texture image.
std::string GetAlbedoTexturePath() const
Returns the path to albedo color texture image.
std::string GetNormalTexturePath() const
Returns the path to normal texture image.
std::unordered_map< std::string, std::string > GetPathMap() const
Returns the map of filename to path. Refer documentation page for available options.
std::string GetNormalTexturePath() const
Returns the path to normal texture image.
std::unordered_map< std::string, std::string > GetPathMap() const
Returns the map of filename to path. Refer documentation page for available options.
std::string GetRoughnessTexturePath() const
Returns the path to roughness texture image.
std::string GetAlbedoTexturePath() const
Returns the path to albedo color texture image.
std::string CloudViewerDownloadsPrefix()
void pybind_demo_pose_graph_optimization(py::module &m)
void pybind_pts_point_cloud(py::module &m)
void pybind_painted_plaster_texture(py::module &m)
void pybind_pcd_point_cloud(py::module &m)
void pybind_ply_point_cloud(py::module &m)
void pybind_crate(py::module &m)
void pybind_sample_sun_rgbd_image(py::module &m)
void pybind_damaged_helmet(py::module &m)
void pybind_living_room_point_clouds(py::module &m)
void pybind_eagle(py::module &m)
void pybind_armadillo(py::module &m)
void pybind_bedroom_rgbd_images(py::module &m)
void pybind_demo_doppler_icp_sequence(py::module &m)
static const DataDescriptor data_descriptor
void pybind_avocado(py::module &m)
void pybind_redwood_indoor_living_room1(py::module &m)
void pybind_sample_redwood_rgbd_images(py::module &m)
void pybind_redwood_indoor_office1(py::module &m)
void pybind_helmet(py::module &m)
void pybind_polylines_model(py::module &m)
void pybind_knot(py::module &m)
void pybind_redwood_indoor_office2(py::module &m)
void pybind_demo_custom_visualization(py::module &m)
void pybind_office_point_clouds(py::module &m)
void pybind_data_classes(py::module &m)
void pybind_jackjack_l515_bag(py::module &m)
void pybind_demo_crop_pointcloud(py::module &m)
void pybind_sample_fountain_rgbd_images(py::module &m)
void pybind_tiles_texture(py::module &m)
void pybind_sample_nyu_rgbd_image(py::module &m)
void pybind_terrazzo_texture(py::module &m)
void pybind_redwood_indoor_living_room2(py::module &m)
void pybind_facets_model(py::module &m)
void pybind_monkey(py::module &m)
void pybind_demo_icp_pointclouds(py::module &m)
void pybind_bunny(py::module &m)
void pybind_wood_texture(py::module &m)
std::string GetCustomDownloadsPrefix()
void pybind_data(py::module &m)
void SetCustomDownloadsPrefix(const std::string &prefix)
void pybind_baluster_vase(py::module &m)
void pybind_demo_colored_icp_pointclouds(py::module &m)
void pybind_wood_floor_texture(py::module &m)
void pybind_sword(py::module &m)
void pybind_metal_texture(py::module &m)
void pybind_sample_l515_bag(py::module &m)
void pybind_sample_tum_rgbd_image(py::module &m)
void pybind_demo_feature_matching_point_clouds(py::module &m)
void pybind_juneau(py::module &m)
void pybind_lounge_rgbd_images(py::module &m)
void ClassMethodDocInject(py::module &pybind_module, const std::string &class_name, const std::string &function_name, const std::unordered_map< std::string, std::string > &map_parameter_body_docs)
Generic file read and write utility for python interface.
Infomation about a file to be downloaded.
std::string extract_in_subdir_
std::string md5_
MD5 checksum of the downloaded file.
std::vector< std::string > urls_
List of URL mirrors.