9 #include <tbb/parallel_for.h>
19 template <
class TFeat,
26 const std::vector<int>& filter_dims,
29 const TFeat* out_importance,
31 const TFeat* inp_features,
32 const TFeat* inp_neighbors_importance_sum,
33 const int64_t* inp_neighbors_row_splits,
34 const TIndex* neighbor_index,
35 const TKernelIndex* neighbors_kernel_index,
36 const TFeat* neighbor_importance,
37 const int64_t* neighbors_row_splits) {
38 const bool NEIGHBOR_IMPORTANCE = inp_neighbors_importance_sum;
40 const int in_channels = filter_dims[filter_dims.size() - 2];
41 const int out_channels = filter_dims[filter_dims.size() - 1];
43 int num_kernel_elements = 1;
44 for (std::size_t i = 0; i < filter_dims.size() - 2; ++i) {
45 num_kernel_elements *= filter_dims[i];
48 memset(out_features, 0,
sizeof(TOut) * num_out * out_channels);
51 tbb::blocked_range<size_t>(0, num_out, 32),
52 [&](
const tbb::blocked_range<size_t>& r) {
53 int range_length = r.end() - r.begin();
55 Eigen::Map<Eigen::Matrix<TOut, Eigen::Dynamic, Eigen::Dynamic>>
56 C(out_features + (r.begin() * out_channels),
57 out_channels, range_length);
59 for (
size_t out_idx = r.begin(); out_idx != r.end();
61 const int out_col = out_idx - r.begin();
62 const size_t neighbor_start = neighbors_row_splits[out_idx];
63 const size_t neighbor_end =
64 neighbors_row_splits[out_idx + 1];
66 for (size_t n = neighbor_start; n < neighbor_end; ++n) {
67 const size_t inp_idx = neighbor_index[n];
68 const int kernel_idx = neighbors_kernel_index[n];
70 TFeat n_importance = NEIGHBOR_IMPORTANCE
71 ? neighbor_importance[n]
76 if (NEIGHBOR_IMPORTANCE) {
77 if (inp_neighbors_importance_sum[inp_idx] !=
79 normalizer /= inp_neighbors_importance_sum
82 size_t num_inp_neighbors;
83 const size_t inp_neighbor_start =
84 inp_neighbors_row_splits[inp_idx];
85 const size_t inp_neighbor_end =
86 inp_neighbors_row_splits[inp_idx + 1];
88 inp_neighbor_end - inp_neighbor_start;
89 if (num_inp_neighbors > 0)
90 normalizer /= TFeat(num_inp_neighbors);
94 Eigen::Map<const Eigen::Matrix<TFeat, Eigen::Dynamic,
96 A(filter + kernel_idx * out_channels *
98 out_channels, in_channels);
100 Eigen::Map<const Eigen::Matrix<TFeat, Eigen::Dynamic,
102 B(inp_features + inp_idx * in_channels,
104 TFeat scale = normalizer * n_importance;
106 (A * (scale * B)).template cast<TOut>();
111 if (out_importance) {
112 for (
int i = 0; i < range_length; ++i)
113 C.col(i) *= TOut(out_importance[r.begin() + i]);
164 template <
class TFeat,
class TOut,
class TIndex,
class TKernelIndex>
167 const std::vector<int>& filter_dims,
170 const TFeat* out_importance,
172 const TFeat* inp_features,
173 const TFeat* inp_neighbors_importance_sum,
174 const int64_t* inp_neighbors_row_splits,
175 const TIndex* neighbor_index,
176 const TKernelIndex* neighbors_kernel_index,
177 const TFeat* neighbor_importance,
178 const int64_t* neighbors_row_splits,
180 #define FN_PARAMETERS \
181 out_features, filter_dims, filter, num_out, out_importance, num_inp, \
182 inp_features, inp_neighbors_importance_sum, \
183 inp_neighbors_row_splits, neighbor_index, neighbors_kernel_index, \
184 neighbor_importance, neighbors_row_splits
186 #define CALL_TEMPLATE(NORMALIZE) \
187 if (NORMALIZE == normalize) \
188 _SparseConvTransposeComputeFeaturesCPU<TFeat, TOut, TIndex, \
189 TKernelIndex, NORMALIZE>( \
192 #define CALL_TEMPLATE2 \
193 CALL_TEMPLATE(true) \
199 #undef CALL_TEMPLATE2
__host__ __device__ float2 normalize(float2 v)
void SparseConvTransposeComputeFeaturesCPU(TOut *out_features, const std::vector< int > &filter_dims, const TFeat *filter, size_t num_out, const TFeat *out_importance, size_t num_inp, const TFeat *inp_features, const TFeat *inp_neighbors_importance_sum, const int64_t *inp_neighbors_row_splits, const TIndex *neighbor_index, const TKernelIndex *neighbors_kernel_index, const TFeat *neighbor_importance, const int64_t *neighbors_row_splits, bool normalize)
void _SparseConvTransposeComputeFeaturesCPU(TOut *out_features, const std::vector< int > &filter_dims, const TFeat *filter, size_t num_out, const TFeat *out_importance, size_t num_inp, const TFeat *inp_features, const TFeat *inp_neighbors_importance_sum, const int64_t *inp_neighbors_row_splits, const TIndex *neighbor_index, const TKernelIndex *neighbors_kernel_index, const TFeat *neighbor_importance, const int64_t *neighbors_row_splits)
Generic file read and write utility for python interface.